Let $A_i$ be the event that there are at least $i$ aces in a five card hand. The number of outcomes (five-card hands) in event $A_i$ is

$$
\sum_{j=i}^{4} \binom{4}{j} \binom{48}{5-j}
$$

In the case of the first hand we are interested in the conditional probability that there are at least two aces in a hand, given there is at least one ace in the hand, i.e. $P(A_2|A_1)$. To find this conditional probability we note that, in the case of equally likely outcomes, we only have to divide the number of outcomes in $A_2 \cap A_1$ by the number of outcomes in $A_1$. We further note that in this particular case, $A_2 \subset A_1$.

$$
P(A_2|A_1) = \frac{\text{card}(A_2 \cap A_1)}{\text{card}(A_1)} = \frac{\sum_{j=2}^{4} \binom{4}{j} \binom{48}{5-j}}{\sum_{k=1}^{4} \binom{4}{k} \binom{48}{5-k}} = \frac{2257}{18472}
$$

Let $A_♠$ be the event that the ace of spaces is in the five-card hand. In the case of the second hand we are interested in the probability that there are at least two aces in a hand given that the ace of spades is in the hand, i.e., $P(A_2|A_♠)$. Again we have only to find the number of outcomes in $A_2 \cap A_♠$ and divide by the number of outcomes in $A_♠$.

$$
P(A_2|A♠) = \frac{\text{card}(A_2 \cap A♠)}{\text{card}(A♠)} = \frac{\sum_{i=1}^{3} \binom{1}{i} \binom{3}{i} \binom{48}{i} \binom{51}{i}}{\binom{1}{1} \binom{41}{4}} = \frac{922}{4165}
$$

As $\frac{922}{4165} > \frac{2257}{18472}$, a five-card hand known to have the ace of spaces has a higher probability of containing multiple aces than a five-card hand that is known to contain an ace.