Generally, it is not guaranteed that such a rectangle can be made from a square with same surface area. It is because slope is (slightly) different between each hypotenuse of a triangle and a trapezoid.

It is possible only when slope is equal.

i.e. \[\frac{x+y}{y} = \frac{x}{x-y}, \] therefore, \(x \) and \(y \) satisfy the ratio of \(\alpha = \frac{1+\sqrt{5}}{2} \).

The answer to another question is that the difference of surface area between the rectangle and square is 1, if \(x \) and \(y \) are adjacent numbers of the Fibonacci series.

The \(n \)th Fibonacci number can be expressed as \(F_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right\}. \)

So, \(x \) and \(y \) can be expressed as

\[x = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right\}, \]

\[y = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right\}, \]

Thus,

\[x^2 = \frac{1}{5} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{2k+2} + \left(\frac{1-\sqrt{5}}{2} \right)^{2k+2} - 2 \times (-1)^{k+1} \right\}, \]

\[y^2 = \frac{1}{5} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{2k} + \left(\frac{1-\sqrt{5}}{2} \right)^{2k} - 2 \times (-1)^{k} \right\}, \]

\[\alpha y^2 = \frac{1}{5} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{2k+1} + \left(\frac{1-\sqrt{5}}{2} \right)^{2k+1} - (-1)^{k+1} \right\}. \]

The difference of surface area is expressed as

\[(x+y)^2 - \alpha (x^2 + y^2) = -x^2 + xy + y^2 \]

\[= \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{2k} + \left(\frac{1-\sqrt{5}}{2} \right)^{2k} - 2 \times (-1)^{k+1} \right\} \times \frac{1}{5} \]

\[= \left[(-5)^k \times (-1)^k + \left(\frac{1+\sqrt{5}}{2} \right)^{2k} \right] \times \frac{1}{5} \]

\[= \left[(-5)^k \times (-1)^k + \left(\frac{1+\sqrt{5}}{2} \right)^{2k} \times 0 \right] \times \frac{1}{5} \]

\[= (-1)^{k+1} \]

Here, \((-1)^{k+1}\) is either 1 or -1, dependent on whether \(k \) is odd or even. But in both cases, difference is 1.

Motohito Tsuchiya