Social Network Intelligence Analysis to Combat Street Gang Violence

Damon Paulo, Bradley Fischl, Tanya Markow, Michael Martin, Paulo Shakarian

Dept. Electrical Engineering and Computer Science
Network Science Center
U.S. Military Academy
West Point, NY
Outline

- Problem
- Technical Overview of the ORCA System
 - Computing Degree of Membership
 - Discovering Seed Sets
 - Identifying Ecosystems
- Prototype and Experiments
- Demonstration
- Conclusion
Problem

There are several analytical problems faced by law enforcement when analyzing violent street gangs.

• Visualize social network representations of the street gang organizations
• Determine gang membership of “unaffiliated” gang associates
• Identify influential gang members
• Identify “corner crews” and sub-groups of a given gang
• Understand the relationships between different street gangs
Problem: Visualizing Social Network

- Collect data on arrests from arrest records
 - Personal information
 - Admitted gang affiliation
 - Other people arrested with individual
- Provide useful visualization representative of the social structure of the gang
Problem: Determine Gang Membership

- Not all gang members admit affiliation when they are arrested
- Assign unaffiliated individuals to a gang with a reasonable level of confidence
Problem: Identify Influential Members

- Gangs are generally decentralized
- Members of law enforcement still suspect that individuals or groups who are particularly influential exist in gangs
Problem: Identify Corner Crews and Sub-Groups

- Criminal street gangs are often highly modular
 - Many identifiable sub-groups
- Corner crews are highly connected clusters of gang members who sell drugs together on the same street corner
Problem: Understand Relationships between Gangs

- There are often relationships between different gangs
- Includes entire gangs and sub-organizations within gangs
- Relationships exist between sub-organizations within the same gang and across different gangs
Problem

In this talk we introduce

ORCA

Organization, Relationship, and Contact Analyzer
Technical Overview

- Arrest record data
- Create social network
- Compute degree of membership (MANCaLog framework)
 - Determine gang ecosystems
 - Partition network to identify sub-groups (Louvain Algorithm)
 - Identify core members of gangs or factions (TIP_DECOMP)
- Identify connectors
- Report generation
Technical Overview: Degree of Membership

- ORCA learns *logical rules* to determine the degree of membership in a given gang based on the number of associates in that gang.

- It then utilizes MANCaLog (Shakarian et al. ‘13) to apply the rules to “unaffiliated” gang associates.

\[
grp_1 \leftarrow \bigvee_i \neg\langle grp_i, 1 \rangle, (grp_1)_{iR}
\]
Technical Overview: Discovering Seed Sets

- ORCA discovers seed sets based on the *tipping model* where an individual adopts a behavior if half of his friends previously adopted.

- We use the heuristic TIP_DECOMP of Shakarian & Paulo ‘12 to quickly identify sets of individuals who can cause universal adoption in a given gang under the tipping model.
Technical Overview: Identifying Ecosystems

- Identifying “corner crews” and other sub-groups of street gangs is an important concern.
- ORCA accomplishes this by finding a partition of the network of a given gang that maximizes modularity (Newman & Girvan ‘04) using the Louvain heuristic (Blondel et al. ‘08).

\[
M(C') = \frac{1}{2m} \sum_{c \in C} \sum_{i, j \in c} w_{ij} - P_{ij}
\]

\[
P_{ij} = \frac{k_i k_j}{2m}
\]
Prototype

• ORCA was implemented in Python 2.7.3 and uses the following libraries:
 • NetworkX 1.7 (support for social network data structures)
 • TKinter 8.5 (GUI)
 • Matplotlib 1.2.0 (Network visualization)
 • PyFPDF 1.7 (PDF report generation)
 • CRANS implementation of the Louvain Algorithm
 • USMA implementations MANCaLog and TIP_DECOMP
Prototype
Evaluation

We used a current real-world law enforcement data set from our partners at a major American metropolitan police department:

- 1 police district
- 5,418 arrests
- 11,421 relationships among arrests
- 1,468 individuals (in one of 18 gangs)
- 1,913 relationships among individuals
Evaluation: Degree of Membership

• The relationship between degree of membership and connections in a given gang mirrors that of previous work (Centola ‘10).

• All 180 unaffiliated gang associates were assigned a degree of membership greater than zero.

• The majority of these individuals would be assigned a degree of membership greater than 0.5.
Evaluation: Degree of Membership

- Plot of inference function for 5 of the gangs (top) displays connection between relationships in gang and degree of membership
- Plot of individuals assigned a certain degree of membership (bottom) shows most were assigned a degree greater than 0.5
Evaluation: Identifying Seed Sets

• Gangs are segregated along racial lines, and belong to one of two racial groups.
• Anecdotally, police report that Racial Group A is more hierarchical than Racial Group B (which is more decentralized).
• We found (on average) that gangs in Racial Group A had seed sets 3.86% smaller than those in racial group B.
Evaluation: Community Structure

- In finding high-modularity communities with the Louvain algorithm, we also found a racial difference among gangs.
- We found (on average) that gangs in Racial Group A (hierarchical) had a modularity 11.2% less than those in Racial Group B (decentralized).
Evaluation:
Ecosystem

- ORCA also generates a network of gang sub-groups based on the ties between them. The sub-graph of this network containing all sub-groups of a given gang (and their neighbors) is the “ecosystem” of that gang.

- This is of particular importance in cases where allied gangs conduct mutually-supportive operations (i.e. in cases of gang retaliation).
Evaluation: Ecosystem
Evaluation: Connecting Individuals

- ORCA also identifies individuals that either claim membership or have connections to multiple gang sub-groups.
- These individuals are important to law-enforcement as they may be important conduits of information between these groups.
Demonstration
Conclusion

• We introduced ORCA, built from the ground-up to aide law-enforcement personnel in intelligence analysis of violent street gangs.

• Currently, we are working with our law enforcement partners to deploy this system to the field and modify it based on their operational needs.

• Additionally, we are starting to consider geographic information as we refine our system.
Questions?