MyEconLab Online Assessment: an application of the Thayer method and Bloom’s taxonomy to improve student learning in Economics

Matthew P. Fix

This paper was completed and submitted in partial fulfillment of the Master Teacher Program, a 2-year faculty professional development program conducted by the Center for Faculty Excellence, United States Military Academy, West Point, NY, 2013.

Abstract

This paper examines the educational benefits of implementing online software as the primary assessment tool to improve student learning in economics. This project has two goals: 1) improve student preparation in class by incentivizing homework prior to each lesson, and 2) improve predictive validity of homework to test scores by aligning learning objectives with assessments. Student preparation is measured through unannounced quizzes administered throughout the semester. Predictive validity is measured by calculating the correlation coefficient between graded assignments and corresponding exam scores. The results show that incentivizing homework improves student preparation, and aligning learning objectives with assessments improves predictive validity.

Introduction

In the Academic Year 2012 (AY12), I began teaching SS201: Principles of Economics, the core economics course at the United States Military Academy. SS201 is a 3.5 hour credit course that presents the basic principles of economic analysis and their application to contemporary economic problems. The SS201 course is generally organized into three blocks over 40 lessons:

- Block I: Microeconomics (Lessons 1-15)
- Block II: Firm Theory (Lessons 16-24)
- Block III. Macroeconomics (Lessons 25-40)

Each lesson, cadets are assigned reading in the textbook as well as optional MyEconLab homework questions. MyEconLab is the online educational software paired with the Hubbard and O'Brien Economics textbook. Additionally, cadets are assigned three problem sets throughout the semester to help practice major concepts and prepare for exams. At the end of each block, students take a Written Partial Review (WPR) exam to assess their learning of major block concepts. Table 1 outlines the graded requirements for AY12-2.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Maximum Points</th>
<th>Percentage of Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPR #1: Lessons 1-13</td>
<td>100</td>
<td>10%</td>
</tr>
<tr>
<td>WPR #2: Lessons 15-22</td>
<td>100</td>
<td>10%</td>
</tr>
<tr>
<td>WPR #3: Lessons 24-37</td>
<td>100</td>
<td>10%</td>
</tr>
<tr>
<td>Problem Sets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem Set #1: Lessons 1-12</td>
<td>40</td>
<td>4%</td>
</tr>
<tr>
<td>Problem Set #2: Lessons 15-20</td>
<td>40</td>
<td>4%</td>
</tr>
<tr>
<td>Problem Set #3: Lessons 24-35</td>
<td>40</td>
<td>4%</td>
</tr>
<tr>
<td>Writing Assignment</td>
<td>Economic Paper Assignment</td>
<td>200</td>
</tr>
<tr>
<td>Instructor Grade</td>
<td>Quizzes, Class Participation</td>
<td>130</td>
</tr>
<tr>
<td>Term End Exam</td>
<td>TEE</td>
<td>250</td>
</tr>
<tr>
<td>Course Total</td>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 1. SS201 Graded Requirements AY12-2
After my first year of teaching eight SS201 sections with over 130 students, I made the following observations based on my classroom interaction with students and course-end feedback:

a. **Optional MyEconLab Homework.** For AY12, MyEconLab homework was optional and not a graded requirement. Consequently, MyEconLab homework completion rates varied and participation tended to decrease as the semester progressed. Additionally, students frequently arrived to class unprepared and I often spent the majority of classroom time teaching basic concepts. In order to motivate students to prepare for class, I began administering unannounced quizzes in-class throughout the semester.

b. **Ineffective Problem Sets.** In lieu of graded homework, students completed three Problem Sets that corresponded to each block, worth 12% of the total course grade. In AY12 course-end feedback, students frequently cited problem sets as the worst part of the course (Appendix A. USMA Course End Feedback AY12 SS201). Students felt that the allocated points were insufficient compared to the considerable time and effort required to complete each problem set. Additionally, I observed very little correlation between problem set performance and exam performance. For example, several students earned an A or B on a problem set, yet failed the WPR exam.

c. **No Learning Objectives.** The course textbook, *Economics* by Hubbard and O’Brien, includes learning objectives for each chapter, which also correspond to questions used in MyEconLab online software. However, the AY12 course did not identify any specific learning objectives in the syllabus. Learning objectives were intentionally omitted to encourage instructors to educate as opposed to train cadets to specific tasks. In lieu of learning objectives, the syllabus provided a single “focus” question to guide each lesson. Ironically, “focus” questions were often unfocused and too broad to inform either students or instructors on the principal concepts relevant for each lesson. Reading assignments were broad and thus student studying was likewise broad and unfocused.

Based on these observations, I made several changes to the course assessment and structure in AY13. This study examines two of these primary changes: 1) implement MyEconLab as the primary assessment tool for daily homework and WPR exams, and 2) align assessments with stated learning objectives for each lesson. While these initiatives were applied course-wide, I will focus this research on the effects of these changes to improve learning outcomes in my classroom.

Research Questions

1) Will incentivizing MyEconLab homework prior to each lesson improve student preparation for class? (RQ1)
2) Will aligning assessments with learning objectives through MyEconLab improve the predictive validity between homework and exams? (RQ2)

Research Population

This project covers two academic years and compares the learning outcomes between SS201 students in AY12 and AY13. This study will utilize second semester data for each year (AY12-2 and AY13-2). Using second semester data should yield more reliable results and reduce variability due to new instructor effects or recent curricular changes. AY12-2 data includes two SS201 sections with a total sample size of 32 students. AY13-2 data includes three SS201 sections with a total sample size of 48 students.
I. MyEconLab Homework – an application of the Thayer Method

A. Conceptual Framework (RQ1)

Coming to class prepared has long been a tradition at the United States Military Academy. During his time as Superintendent of West Point from 1817 to 1833, Colonel Sylvanus Thayer established a teaching philosophy known as the Thayer Method. The premise of the Thayer Method is that students are responsible for their own learning, and arrive to class with an introductory understanding of the material and are prepared to discuss or solve problems in-class. Colonel Thayer maintained small classroom sizes and expected cadets to come to class ready to recite knowledge and work problems at the chalkboards. Cadets were graded on their daily preparation, oral recitation and work at the board (Shell, 2002). The Thayer Method is implemented today in various forms but continues to emphasize self-study and daily homework.

After my first year of teaching economics at West Point, I observed that my students were often unprepared for class. Reflecting on the Thayer Method, I realized that my students had little incentive to come prepared to class. In AY12, MyEconLab homework was optional and did not count towards the cadets’ grade. In the spirit of the Thayer Method, I also sought to emphasize self-study and incentivize daily homework in my economics class to improve student preparation. So for AY13, I assigned graded MyEconLab homework due prior to each lesson worth 15% of the students’ overall course grade.

B. Methodology (RQ1)

My first research question aims to determine how incentivizing homework prior to each lesson affects student preparation. I will measure student preparation by administering four unannounced quizzes throughout the semester. Since quizzes are unannounced, student scores will indicate how prepared students are for class. I administered at least one quiz per block, spaced approximately three weeks apart. Each quiz was worth 10 nominal points and only counted towards the students’ holistic instructor grade. The four quiz lessons and subjects are listed below:

1. Lesson 2: Economic Vocabulary Quiz
2. Lesson 10: Tax Policy Quiz
3. Lesson 19: Firm Theory Quiz
4. Lesson 32: Monetary Policy Quiz

The quiz questions did not attempt to assess comprehension or mastery of material, but rather a basic understanding of the main concepts assigned in each reading. The content of these four quizzes remained unchanged between AY12 and AY13. I will compare quiz scores from AY12 (optional MyEconLab homework) to AY13 (graded MyEconLab homework). Higher average quiz scores will indicate better student preparation.

C. Results (RQ1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AY12-2 (32)</td>
<td>85.42%</td>
<td>74.30%</td>
<td>60.17%</td>
<td>70.79%</td>
<td>72.67%</td>
</tr>
<tr>
<td>AY13-2 (48)</td>
<td>87.34%</td>
<td>92.89%</td>
<td>80.15%</td>
<td>80.08%</td>
<td>85.11%</td>
</tr>
<tr>
<td>Grade Delta</td>
<td>+ 1.92%</td>
<td>+ 18.59%</td>
<td>+ 19.98%</td>
<td>+ 9.82%</td>
<td>+ 12.44%</td>
</tr>
</tbody>
</table>

Table 2. SS201 Quiz Performance Comparison: AY12-2 vs. AY13-2
Table 2 shows the average quiz scores for my SS201 students for AY12-2 and AY13-2. The difference in scores between AY12 and AY13 is calculated as the “grade delta”. A positive “grade delta” indicates that students scored higher in AY13 compared to AY12.

![Diagram showing quiz performance comparison between AY12-2 and AY13-2](figure1.png)

Figure 1. SS201 Quiz Performance Comparison: AY12-2 vs. AY13-2

Figure 1 clearly illustrates that students in AY13-2 consistently scored higher on every SS201 quiz compared to AY12-2. The first quiz administered on Lesson 2 shows a negligible difference with less than 2% variance between AY12 and AY13. This may be due to high initial motivation early in the semester. However, as the semester progresses and student workload increases with varying demands, the performance differences between AY12 and AY13 become much more significant. Near the middle of the semester during Lesson 19, the grade difference rose to nearly 20%. By Lesson 32 in the final block, the grade delta stabilized just below the overall semester average. On average, AY13-2 students performed over 12% higher on their unannounced quizzes compared to AY12-2 students – more than one full letter grade better.

D. Analysis (RQ1)

One of the fundamental principles of economics is that people respond to incentives. This study upholds this basic principle. The higher quiz scores in AY13-2 can largely be attributed to incentivizing MyEconLab homework prior to each lesson. These results validate that students are more prepared for class when given incentives to complete homework before class. By simply allocating 15% of the total course points to MyEconLab homework, student preparation as measured by quiz performance improved by more than a whole letter grade. So rather than students walking into class with a C-level of understanding (73%), on average students arrived with a B-level understanding (85%).

While graded MyEconLab homework due prior to each lesson is a simple application of the Thayer Method and the basic economic principle of incentives, this curricular change produces additional compounding benefits to learning in the classroom.
1) First, graded MyEconLab homework saves valuable classroom time. Administering quizzes consume 5-10 minutes of class time; especially after considering time required to distribute, collect and organize paper. The opportunity cost of in-class quizzes is additional instruction, board problems or class discussion. With graded online homework due each lesson, in-class quizzes are no longer required to ensure student preparation.

2) Second, instructors can increase the depth and breadth of instruction. Since students arrive to class with an elevated baseline of knowledge, instructors can begin at a higher starting point to cover more material or progress further to more advanced concepts.

3) Third, instructors can utilize MyEconLab data to improve the efficiency of their instruction. MyEconLab software includes a feature called Item Analysis (IA) that provides summary data on missed questions and time spent by student. Instructors can view these results before class to tailor their instruction for each section and target known areas of weakness or confusion.

With only 55 minutes each lesson to educate and inspire cadets “to anticipate and respond effectively to the uncertainties of a changing technological, social, political, and economic world” – every minute counts (USMA, 2007). These findings confirm that Colonel Thayer’s methods remain relevant in classrooms today. Incentivizing preparation prior to class optimizes learning in the classroom and maximizes interactions between students and teachers.

II. MyEconLab Learning Objective Alignment – an application of Bloom’s Taxonomy

A. Conceptual Framework (RQ2)

In 1956, Benjamin Bloom and a group of educational psychologists established six levels of the cognitive domain known as Bloom’s Taxonomy (Bloom, 1956). Figure 2 depicts Bloom’s Revised Taxonomy (Anderson & Krathwohl, 2000). Bloom’s taxonomy represents a hierarchy of thinking skills: Lower-order skills include Remembering, Understanding and Applying; and higher-order skills include Analyzing, Evaluating and Creating. Bloom’s framework has been applied by educators for generations to classify levels of learning and educational objectives.

![Cognitive Domain](image)

Figure 2. Bloom’s Revised Taxonomy (Anderson & Krathwohl, 2000)
Alignment ensures that objectives, instruction and assessment are consistent with one another. An effective application of Bloom’s Taxonomy is to align learning objectives with assessments. Figure 3 illustrates an example of such an application by the Center for Teaching and Learning with Technology at Johns Hopkins.

![Figure 3. Using Bloom’s Taxonomy to Align Learning Objectives with Assignments (CTLT)](chart.png)

Clearly stated learning objectives are essential for an efficient learning experience. As Karns, Burton & Martin observed, “objectives give direction to the course content, guidance in text selection, continuity to curricula, and purpose to the student” (Karns, Burton & Martin, 1983). John Biggs describes teaching as a system. Biggs maintains that a ‘good’ system aligns learning objectives to both teaching and assessment to optimize the conditions for quality learning (Biggs, 2003).

After my first year teaching economics, I observed that problem sets were ineffective assessments and students appeared unguided in their studying. Reflecting on Bloom’s taxonomy and the educational research that underscores the integration of learning objectives, I realized that many of these concerns may be related to the absence of learning objectives in the AY12 curriculum. Consistent with Biggs’ concept of building a ‘good’ system, I added learning objectives in AY13. Moreover, I aligned these learning objectives with assessments through MyEconLab homework, WPRs and the Term-End Exam (TEE). Figure 4 illustrates the updated assessment model for SS201 for AY13 with each graded assignment classified using Bloom’s revised taxonomy.
B. Methodology (RQ2)

My second research question aims to determine how aligning assessments with learning objectives affects predictive validity. An assessment is considered valid if it actually measures what it says it is measuring. Predictive validity is a type of criterion-related validity, codified by the American Psychological Association that measures the extent an assessment predicts something it should theoretically be able to predict, and serves as an indicator of future performance (APA, 1954). For instance, comparing if students with high SAT scores also earn high undergraduate GPAs would be an effort to determine predictive validity. In this study, I apply the theory of criterion-related validity to assess how well different assignments predict future exam scores. The instruments will be Problem Sets (AY12) and MyEconLab homework (AY13), and the criterion is the corresponding WPR exam scores.

Predictive validity is most commonly measured by calculating the Correlation Coefficient between an instrument and some future criterion. The Correlation Coefficient (r), also called the Pearson product moment correlation coefficient, measures the strength and direction of a linear relationship between two variables. Table 3 outlines the rule of thumb for interpreting the strength of correlation. An instrument with high predictive validity will have a high positive correlation to corresponding exam scores (r > 0.70). If high predictive validity is established, then a good score on a given assignment should predict a good score on a corresponding future exam. Predictive validity is desirable for both instructors and students to help identify gaps in learning prior to exams.

<table>
<thead>
<tr>
<th>Size of Correlation</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>.90 to 1.00 (-.90 to -1.00)</td>
<td>Very high positive (negative) correlation</td>
</tr>
<tr>
<td>.70 to .90 (-.70 to -.90)</td>
<td>High positive (negative) correlation</td>
</tr>
<tr>
<td>.50 to .70 (-.50 to -.70)</td>
<td>Moderate positive (negative) correlation</td>
</tr>
<tr>
<td>.30 to .50 (-.30 to -.50)</td>
<td>Low positive (negative) correlation</td>
</tr>
<tr>
<td>.00 to .30 (.00 to -.30)</td>
<td>Little if any correlation</td>
</tr>
</tbody>
</table>

Table 3. Rule of Thumb for Interpreting the Size of a Correlation Coefficient (Hinkle, Wiersma & Jurs, 2003)
To determine whether aligning learning objectives with MyEconLab improved predictive validity of MyEconLab homework compared to AY12 problem sets, I will compare two relationships: 1) the correlation between AY12 problem set and corresponding WPR scores, and 2) the correlation between AY13 MyEconLab homework and corresponding MyEconLab WPR scores. A higher correlation coefficient between an assignment and its corresponding WPR grades will indicate better predictive validity.

C. Results (RQ2)

Table 4 shows a Pearson’s correlation matrix between problem set grades and WPR scores for AY12-2. The bolded correlation coefficients demonstrate the strength of linear relationship between the problem set scores and the corresponding WPR scores. The correlation coefficients for all three problem sets remain between .30 and .50, indicating low positive correlation. Based on the consistently low correlation, we can conclude that AY12 problem sets demonstrate low predictive validity. In other words, problem sets were not a useful measure to predict performance on WPR exams.

<table>
<thead>
<tr>
<th>AY12-2 SS201 (n = 32)</th>
<th>WPR1</th>
<th>PS1</th>
<th>WPR2</th>
<th>PS2</th>
<th>WPR3</th>
<th>PS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPR1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS1</td>
<td>0.3889</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPR2</td>
<td>0.3679</td>
<td>0.2661</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS2</td>
<td>0.0897</td>
<td>0.5557</td>
<td>0.3524</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPR3</td>
<td>0.6355</td>
<td>0.3574</td>
<td>0.5363</td>
<td>0.1031</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PS3</td>
<td>0.2891</td>
<td>0.4278</td>
<td>0.3483</td>
<td>0.3203</td>
<td>0.4729</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4. Correlation matrix between Problem Sets and Written Partial Reviews AY12-2

Table 5 shows a Pearson’s correlation matrix between MyEconLab homework grades and WPR scores for AY13-2. Note that data for HW3 and WPR3 is not available for AY13-2. The bolded correlation coefficients demonstrate the strength of linear relationship between the MyEconLab homework scores and the corresponding WPR scores. The correlation coefficients for both MyEconLab homework assignments during the first two blocks are above 0.50, indicating a moderate to strong positive correlation. These results suggest that the AY13-2 MyEconLab homework assignments demonstrate good predictive validity and are a useful measure to predict performance on WPR exams.

<table>
<thead>
<tr>
<th>AY13-2 SS201 (n=48)</th>
<th>WPR1</th>
<th>HW1</th>
<th>WPR2</th>
<th>HW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPR1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW1</td>
<td>0.7069</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPR2</td>
<td>0.6826</td>
<td>0.6094</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HW2</td>
<td>0.5920</td>
<td>0.8079</td>
<td>0.5482</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5. Pearson’s correlation matrix between MyEconLab homework and WPRs AY13-2
D. Analysis (RQ2)

Compared to AY12 problem sets, the AY13 MyEconLab homework assignments demonstrate significantly higher predictive validity. There are several reasons that may explain the low correlation between the AY12 problem sets and WPRs. AY12 Problem sets and WPR exams were often created by two different instructors who may emphasize different concepts in the course. The lack of course learning objectives makes it more difficult to ensure assessments meet content validity and are appropriately weighted. By contrast, each question in MyEconLab corresponds to a specific learning objective.

The higher predictive validity in AY13 can largely be attributed to this alignment of learning objectives through MyEconLab. The use of learning objectives to guide assessment creation helps ensure exams are balanced and appropriately weighted in content. Instructors who create exams in MyEconLab must first select a desired learning objective prior to selecting a question. For example, each block includes roughly 15-20 learning objectives. A typical MyEconLab WPR exam consists of 25-30 questions. Thus instructors can assign 1-2 exam questions per learning objective to ensure a comprehensive exam, or emphasize a particular learning objective as desired. The inclusion of learning objectives allows instructors to deliberately develop assessments that are more consistent with course goals. These finding are consistent with Biggs (2003), that integrating learning objectives with teaching and assessments improves predictive validity of assessments and provides students with a better framework to guide learning.

Conclusions

MyEconLab online assessment is a mutually beneficial educational tool for both students and instructors. This research project achieved both its goals: 1) this study successfully applied the Thayer Method to improve student preparation in class by incentivizing homework prior to each lesson, and 2) this study successfully applied Bloom’s taxonomy by aligning lesson objectives with assessments and improved the predictive validity of course assignments. Integrating online assessments with textbooks and teaching can significantly improve student learning and streamline a course. MyEconLab saves time in and out of the classroom, improves efficiency of instruction, increases content validity of assessments, promotes self-directed learning and provides students and instructors with timely and relevant feedback and data.

While this study demonstrates the usefulness of MyEconLab to improve student learning, it is not without limitations. The questions available in MyEconLab for homework and exam questions are limited and can be exhausted over time. Proctoring online exams in the classroom may be disrupted by internet bandwidth lag and wireless connectivity issues. Additionally, the majority of MyEconLab questions tend to assess lower cognitive learning skills in accordance with Bloom’s taxonomy (Remember, Understand, and Apply). On the other hand, lower cognitive learning objectives also lend themselves more to online assessments and automatic grading. By acknowledging these limitations, instructors can identify those learning objectives that correspond with lower cognitive skills, and streamline those objectives through online assessments. This allows instructors to dedicate more time on quality teaching and focus efforts on assessing higher order cognitive skills.

About midway through the AY13-2 semester, I conducted a course-wide survey for SS201 that involved 438 students. One survey question asked students to rate how much various educational resources helped them learn economics. Resources included MyEconLab software, the textbook, instructor class lectures, in-class exercises, and peer instruction. Cadets graded each resource based on a five-level Likert scale (1-5), where 1 = least helpful (“not at all”) and 5= most helpful (“a great deal”). Figure 5 graphically illustrates the student responses to this survey question.
Students definitively rated MyEconLab homework as the most helpful resource to learn economics. Of the 438 students surveyed, 62% gave MyEconLab the maximum mark of 5, while 88% responded positively with a 4 or higher (more than neutral). Students valued MyEconLab more than both the instructor and the textbook. These results provide further evidence that using MyEconLab online software as a primary assessment tool promotes greater self-study with positive learning outcomes.

Recommendations for Future Research

Future research could examine whether increasing the objectivity of a course, through online assessments and stated learning objectives, reduces instructor variability in the classroom. Instructor variability could be measured by using exam scores as the dependant variable in a multiple regression with instructor section as one of several independent variables to test for statistical significance. This research would be particularly useful to evaluate for a core course with several different instructors.

The use of online assessment software is advantageous for educational research as data is easily available. Another option for future studies would be conducting a detailed analysis on the reliability and validity of specific assessments. The Item Analysis (IA) feature summarizes missed questions and time spent per student. Future research could analyze each exam for content validity based on stated learning objectives.
Bibliography

Appendix A. USMA Course End Feedback SS201 AY12

C11. What was the worst thing about this course?

- Drawing graphs are boring...
- The proportionality between the length of the problem sets and the amount that they're worth.
- The problem sets took long with not enough point value.
- I thought WPRs were not a fair assessment and for the most part went beyond the course objectives.
- The math sometimes just didn't make sense to me
- I think the point distribution did not accurately reflect the amount of time spent on certain assignments. The problem sets took a large amount of time, but were not worth that many points.
- Problem sets need to be worth WAY more points! I definitely did not put very much time into problem set 3 because I'd realized how minimally it impacted my grade.
- having WPRIII right before the TEE
- problem sets were not worth the effort (point value)
- the WPRs being ridiculous long and worded poorly. My grades on the WPRs did not reflect the effort put into study for them because they are unfair
- The readings...
- The problem sets were not worth enough points compared to the amount of work required.
- The final WPR
- The problem sets. I spent on average 6 hours per problem set and they seemed excessive. I learned more from class discussions than I ever learned from wasting time doing problem sets
- The WPRs could be graded very subjectively in a course where there are many solutions that could be right. This often dropped grades causing them to be a poor reflection of the students actual knowledge
- Block 3 came really fast and we could have spent more time on it. MyEconLab needs some work.
- There were at times a lot of reading.
- The problem sets, they were not worth enough points and took too much time
- It was very basic. All in all, it was a good overview however.
- Problem sets
- The problem sets.
- Nothing really
- Problem sets were worth so few points relative to how much time was put into them.
- The worst thing about his course was the problem sets. For the amount of points that they were worth, they took far too long to complete.
- Problem sets' worth being so little compared to time.
- Problem sets were too long I felt that having to complete problem sets both on paper and in MyEconLab was a bit much. The concepts could have been tested with about half the number of questions.
- The problem sets were extremely time consuming but only reflected a small fraction of one's grades.
- Macro economics
- The problem sets were not worth very many points but took several hours to complete.
- The problem sets were lengthy and more work than their point values.
- Problem sets
- It is an over simplification of economics but I understand this is necessary as it is a beginning class.
- my grade, i enjoyed the class and i felt that a had a pretty good understanding most of the time, but i often did not do nearly as well on the test as a i thought i would
- The worst part was the problem sets. Far too much work for not enough points.
- None.
- The problem sets too a great amount of work for little points.