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1 Executive Summary 
 

 A general theory for Transient Statistical Energy Analysis (TSEA) has been developed in 

unpublished work by Robin S. Langley of the Cambridge University Engineering Department 

(CUED, Cambridge, England), for the case of impulsive point-loading acting on a general built-up 

system.  This TSEA theory is applicable to any system for which a Statistical Energy Analysis 

(SEA) model exists.  Such SEA models have been employed widely, as for vibration analysis in 

the automotive and aeronautical industries.  More famously, the microgravity vibration allocation 

for the International Space Station stemmed from a Boeing/NASA SEA model.  Extensions to 

more general transient loadings—such as blast loads—are under development, along with 

statistical bounds.  The general theory is adaptable to a hybrid FEA/SEA framework, to provide a 

full-spectrum hybrid transient analysis for built-up systems of considerable complexity.  The 

present work applies the Langley methodology to a planar system comprising two flexible plates in 

simple support, connected at a line junction.  The paper concludes with a partial verification, for 

flat rectangular plates, using exact modes and zero coupling loss factors.  The match between 

theory and physics is shown to be nearly exact.        

 

2 Introduction 
 

 The shock-response analysis of complex built-up systems is an inherently transient-response 

endeavor, for which a general treatment must entail a full-spectrum approach.  Deterministic 

methods—such as Finite-Element- or Finite-Difference Analysis (FEA, FDA)—can often 

approximate subsystem low-frequency responses with sufficient accuracy.  However, with 

increasing frequency these methods rapidly become impractical or infeasible due to material or 

manufacturing variabilities and computational overhead.  Statistical Energy Analysis (SEA) has 

been used to great effect at higher frequencies, to approximate the vibratory responses of quite 

general vibro-acoustic built-up systems having considerable complexity.  But SEA is inherently 

a steady-state approach; accordingly, some researchers have sought transient extensions in a 

quest to adapt its capabilities to shock-response problems.  In two of the more recent papers 

Pinnington and Lednik [1, 2] presented and solved TSEA equations (1) for a discrete system 

comprising two coupled single-degree-of-freedom oscillators, with one oscillator excited by a 

Dirac delta impulse; and (2) for a distributed system comprising two in-line coupled beams of 

different cross-sectional areas, impulsively excited at the end of one beam.  These comparisons 
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of TSEA results with exact analytical solutions show clearly the promise of TSEA.  However, to 

date the reported efforts have treated only special cases; a general theory has yet to emerge in the 

literature. 

 

 Recently, in two unpublished works, Langley [3, 4] developed a practical TSEA 

methodology for the case of an impulsive point-load, with known spectrum, acting on a general 

built-up system.  Extensions to more general transient loadings—such as blast loads [5]—are 

well along in development.  The general theory is adaptable to a hybrid FEA/SEA framework, so 

as to provide a full-spectrum hybrid transient analysis for built-up systems of considerable 

complexity.  This new transient SEA theory is applicable to any system for which a Statistical 

Energy Analysis (SEA) model exists. 

 

 As a partial verification, the present paper documents a case study applying (and outlining, 

but without full disclosure) the Langley methodology to a simple system under known load.  A 

comparison of transient SEA results, against an exact modal model of a flat rectangular plate 

excited by an ideal rectangular impulse, shows a remarkably good match between theory and 

physics.        

 

3 Problem Statement and Approach 
 

 In particular, the task at hand is to verify Langley’s general solution to the transient SEA 

equations, using an exact planar-system model comprising two flat, rectangular flexible plates in 

simple support, connected by a line junction.  The approach will be (a) to outline Langley’s 

transient SEA methodology (designated herein by ―TSEA-L‖, for convenience) to determining 

the transient response of a general system to transient point-loading (see below, Section 4); (b) to 

provide general expressions, of a general linear system under transient point-load, for exact 

system position and velocity response, kinetic energy, potential energy, and total energy (Section 

5); (c) to apply TSEA-L to the two-plate system for known deterministic point loads—only 

results for a rectangular pulse are detailed below (Section 6, Subsection 6.1); (d) and to apply the 

deterministic equations to the same system-plus-loading case (Subsystem 6.2), for comparison 

against the TSEA-L results (Subsection 6.3).     

  

4 Transient SEA Equations 
 

 Assume first a standard matrix form, below, for SEA equations: 

 

       inPEA  . (1) 

 

Following Langley, assume that transient SEA equations have corresponding form: 

 

 
 

     tt
t

t
in ,,

d

,d



PEA

E
 . (2) 

 

Langley has shown that for impulsive point-load )(tf , with Fourier transform )( iF , the 

transient SEA energies can be determined as follows: 
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i. Find subsystem initial conditions: Determine the initial-condition vector,  0,E . 

ii. Find subsystem transient solutions: Determine the transient-energy vector,  t,E , by 

solving (2) via the initial conditions found in (i) above. 

iii. Find subsystem total energies: Determine the total-energy vector,  ttotE , by integrating 

 t,E  over frequency. 

 

 For the impulsive point-loading case of a system comprising   subsystems, Langley’s 

treatment leads to the following transient solution for the system total-energy vector: 
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where subsystem k has mass kM , modal density )(kn , and impulsive point-load )(tfk  with 

Fourier transform )( iFk .  Matrix )(A  is the system matrix for the steady-state SEA 

equations, when using subsystem total-energies as the states. 

 

 Langley has demonstrated further [3, 4] that the above total energies can be used to 

determine subsystem spatial-average squared-velocities,  tv j
2

 and shock-response spectra. 

 

5 Transient Deterministic Energy Equations 
 

5.1 Transient Response 

 

 For arbitrary loading ),( 0 txf  on a system the generalized force in mode k, integrated over 

system volume  , is  
 

 000 d)(
~

),()( xxtxfth kk 


 , (4) 

 

for which the position time-response (e.g., transverse position) at location x  is given by: 
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k

kk thxtxu 
~

),( . (5) 

 

If the load is concentrated, at single input point 0x , then the position response takes the form: 

 

      
k

kkk tfxxtxu 
~~

),( 0 , (6) 

 

where  k
~

 is the thk modeshape, scaled to unit generalized mass, and where the generalized 

modal forces are found by convolution: 
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,
,

sin
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.   (7) 

 

Accordingly, the velocity time-response (e.g., transverse velocity) can be expressed by: 

 

      
k

kkk tgxxtxu 
~~

),( 0 , (8) 

 

where     tftg kk
 . (9) 

 

5.2 Transient Kinetic Energy 
 

 The squared velocity-response is: 

 

              tgxxtgxxtxu lll

l k
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 , (10a) 
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lk 00

~~~~
 . (10b) 

 

Accordingly, the system kinetic energy can be expressed and simplified as follows: 

 

    xtxutT d,
2

1
)( 2



   (11a) 

             

 

       tgtgxxxxx lklk

l k

lk

kl

00

normalized-mass are     
 modeshapes  thebecause  

,deltanecker oKr    

~~
d

~~

2

1






 













  


, (11b) 

 

leading to              
k

kk tgxtT 2
0

2~

2

1
)(  . (12) 



  AUTS 2014 (8 Apr 2014) 

 5 

 

A simple expression for the expectation of the kinetic energy, over disturbance-input position, 

follows from (12).  First one takes the expectation of both sides of (12): 
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Since the modeshapes are mass-normalized,  
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Taking the expectation of (14), and simplifying, one obtains: 
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which leads directly to:  
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Substitution from (16) into (13) yields: 
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5.3 Transient Potential Energy 

 

 System potential energy can be found similarly.   The squared position-response is: 

 

                tfxxtfxxtxu lll
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              tftfxxxx lklk
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 Accordingly, the system potential energy can be expressed and simplified as follows: 
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The expectation of the potential energy, over disturbance-input position, is: 
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5.4 Transient Total Energy 

 

 The respective sums of (12) and (20), and of (17) and (21), give expressions for the transient 

total energy and its expectation over disturbance-input position: 
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6 Case Study 
 

 To verify the TSEA equations, MATLAB code was written to determine and plot the 

response of a planar system comprising two connected rectangular plates (Plates 1 and 2), to a 

deterministic transverse point load: a rectangular impulse, applied to one of the plates.  Plate 

parameters were as indicated in Appendix A (for aluminum).The plates were simply supported, 

and connected along a line junction the entire length of the two adjacent sides.  The two plates 

were assumed to be identical, with equal, and constant (frequency-independent), damping loss 

factors.       

 

6.1 Transient SEA Model 

 

The system’s transient response was first determined using the above TSEA-L procedure 

(Section 4).  The coupling loss factors, 12  and 21 , equal by reciprocity considerations, were 

computed and plotted via MATLAB using a wave approach.  The plot of ij10log  versus 

10log  was found to be linear (Fig. 1);  ij10log  versus 10log  was also linear, with a 

slope of ½ (Fig. 2).  Accordingly, the following frequency dependence was used for the coupling 

loss factors:  
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          ,//log5.0log^10 000010  ijijij   (24) 

 

where 0  is a small nonzero value of  . 

 

 
Figure 1. Log-log plot of coupling loss factor vs. frequency, across a line junction 
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Figure 2. Log-log plot of frequency-times-coupling-loss-factor vs. frequency, across a line junction 

 

TSEA-L yielded expressions for, and MATLAB plots of, ensemble-average transient total 

energy responses of each plate,  tE jtot, , to four types of deterministic transverse point-loads, 

each applied individually to Plate 1:   
  

 

 Rectangular impulse 

 Haversine impulse 

 Sawtooth impulse 

 Decaying exponential impulse. 
 

A MATLAB mfile was also written to determine and plot the energy spectra,  jE , for the 

individual subsystem responses, by integrating numerically the transient solutions  tE j , , with 

respect to time. 

  

 Transient solutions  tE j ,  follow below for each type of impulse; temporal- and spectral-

energy plots for each plate can be found directly from these solutions, by numerical integration.  

Assuming identical plates having masses M, damping loss factors  , coupling loss factors  , 

and modal densities n ; and defining, for convenience,  
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 For a rectangular impulse of duration rT and amplitude rTF /  (i.e., of strength  ):  
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, (26) 

   

the transient solutions for the two plates are as follows: 
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 For a haversine impulse of duration hhT  /2  and amplitude hT/2  (i.e., of strength  ): 
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the two transient solutions are: 
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 For a symmetric sawtooth impulse of duration sT2  and positive slope 
2/ sT  (i.e., of 

height sT and strength  ): 

 

  
 









ssss

s

TtTTtT

Ttt
tf

2,

0,




 (30) 

 the transient solutions are: 
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 And for a decaying exponential impulse of amplitude 
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constant   (i.e., so that for an impulse lasting m decay constants the strength is  ): 
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 the transient solutions are: 
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 For a rectangular impulse of strength 1000 N-s and duration 0.1 sec, and with damping ratios 

0.001 and coupling loss factors from (24), the transient total-energy responses of the two plates 

are given below (Figs. 3 and 4).  The curves for Plates 1 and 2 are given in red and blue, 

respectively; the black curve of Figure 4 is the sum of those curves, representing the total system 

energy. 

 

 
Figure 3. Total energy plots for Plates 1 (red) and 2 (blue) 
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Figure 4.  Total subsystem (red, blue) and total system (black) energy plots 

 

Spectral plots are shown below for the two plates, with zero losses (Figs. 5 and 6).  The red plots 

show the energy spectrum for Plate 1; the blue plots (zero for all frequencies, as expected), for 

Plate 2. 

 

 
Figure 5.  Spectral energies (Plate 1: red; Plate 2: blue), for no losses 
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Figure 6.  Spectral energies (Plate 1: red; Plate 2: blue), for no losses 

 

 

6.2 Benchmark (Exact) Model 
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Kinetic- and potential-energy plate-responses can be determined from (12) and (20), 

respectively, upon respective determination of  tfml  and  tgml  from (7) and (9), with 

disturbance load described by (26).   

 

 First, generalized forces  tfml  and generalized velocities  tgml  are found to be: 
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 Next, the modal kinetic and potential energies are determined, for the period of the impulse 
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For time after the impulse  t , the modal kinetic and potential energies are, respectively: 
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The total plate energy is the sum of modal kinetic and potential energies, over all modes. 

 

6.3 Comparison Plots 

 

The following figures pertain to an aluminum plate, with base m 1a , height m 8.0b , 

depth inch) 1 (i.e., m 0127.0d , structural damping ratio 02.02    (all modes), mass 

density 3kg/m 2780M , area density MA h  , mass MabhM  , acceleration due to 

gravity 2m/s 81.9g , Young’s modulus 
210 N/m 101.7 E , shear modulus 

210 N/m 1055.2 G , and Poisson’s ratio 33.0 .  The impulse strength was s 1000  N .  

The plots use an ensemble of 100 members, for which the respective kinetic energies (KE), 

potential energies (PE), and total energies (TE=KE+PE) were determined exactly for a 

rectangular plate, using analytical expressions for the eigenstructure.  Those individual plots 

appear in the ―cloud‖ figures below (Figs. 7 through 9).  Figures 10 through 12 show plots of 

ensemble averages for KE, PE, and TE.
*
  Figure 13 compares ensemble-mean KE (x 2) and 

TSEA-L results.  Figures 14 and 15 compare the ensemble averages (2KE, 2PE, and 

TE=KE+PE) with the total energy determined using TSEA-L.  Note that the total energy found 

deterministically, using the exact eigenstructure, matches very closely the TSEA-L energy.  

 

                                                 
*
 Ensemble averages were found by actually averaging the ensemble members—that is, via 

Equations (12) and (20), rather than by simply using (13) and (21) directly.  The latter set of 

equations would, of course, produce very similar results, but without the ―cloud‖ plots of Figures 

7 through 9).  
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Figure 7. Exact plots of kinetic energy for 100-member ensemble, Plate 1, no coupling. 

 

 
Figure 8. Exact plots of potential energy for 100-member ensemble, Plate 1, no coupling. 
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Figure 9. Exact plots of total energy for 100-member ensemble, Plate 1, no coupling. 

 

  
Figure 10. Ensemble-mean plot of kinetic energy for 100-member ensemble, Plate 1, no coupling. 
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Figure 11. Ensemble-mean plot of potential energy for 100-member ensemble, Plate 1, no coupling. 

 

 
Figure 12. Ensemble-mean plot of total energy for 100-member ensemble, Plate 1, no coupling. 
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 Figure 13. Comparison of exact 2KE (ensemble-averaged),  

and TE via TSEA-L, for system, with no coupling 
 

 

       
 Figure 14. Exact system 2KE, 2PE, KE+PE; and TE via TSEA-L 
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Figure 15. Exact system 2KE, 2PE, KE+PE; and TE via TSEA-L 
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As a final internal-consistency check of TSEA-L, the total energy of the full system (both 

plates), found using TSEA-L with damping ratios 0.001 and coupling loss factors from (24)—the 

green plot of Figure 11, was subtracted from the total energy of the full system, found using 

TSEA-L with for damping ratio 0.001 and zero coupling loss factors—the black plot of Figure 2.  

Since the damping loss factors are identical for the two cases, the two total-energy-versus-time 

plots should be identical.  This is, in fact, the case: the difference between these two curves, 

plotted in Figure 15, is essentially zero. 

 

 
Figure 16.  TSEA-L TE for full system, with actual CLFs,  
minus sum of TSEA-L subsystem TEs, with zero CLFs.  

 

7 Application and Future Work 
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extendable to the case, at least, of uniform blast loads of specified spectral content.  The TSEA 

models will have a fidelity corresponding to the level of fidelity of the underlying SEA model, 

for which commercial software is already available.    
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for spatially varying blast-loading; (3) to integrate TSEA theory with Random Generalized Force 

Reconstruction (RFGR) and into hybrid FEA/SEA methods; (4) to determine statistical bounds 

on TSEA and hybrid FEA/TSEA; and (5) to develop user-friendly implementation software for 

TSEA.  (6) Benchmarking and validation studies could also be pursued, to explore fidelity and 

suitability guidelines and limitations.      

 

8  Summary and Conclusion 
 

 A solution to transient SEA equations has been developed for a general built-up system 

possessing a valid SEA model.  The TSEA solution applies directly to the case of impulsive 

point-loadings; but straightforward extensions are possible for the case of impulsive uniform-

blast loadings, and for point- and uniform-blast-loading combinations.   

 

 The TSEA solution was applied to a homogeneous rectangular plate under simple support, 

for which the eigenstructure is known in exact analytical form.  Comparison of TSEA- and 

spatially averaged exact-model transient shock responses showed a near-perfect match.  TSEA 

theory may at last be at a level of rigor and generality sufficient to justify concerted development 

efforts in theory-refinement and application-software development.    
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11 Appendix A: Plate Parameters 

 

Length:  1a m 
 
 
 
 

Width:   8.0b m 
 
 

 
 

Depth (thickness):  0254.0d m 1 in 
 
 

 
 
 

Mass density:  2780M kg/m
3
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Young’s modulus: 
10101.7 E N/m
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Shear modulus: 
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Poisson’s ratio: 33.0  
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Abstract—Malware is a constantly shifting threat to computer 
systems that works to hijack the host computer for various 
nefarious purposes. Defeating malware is an endless struggle for 
developers as threats are continuously morphing and evolving to 
overcome current defensive techniques. However, the latest 
generation of processors presents new opportunities for malware 
defense by integrating multiple architectures on the same silicon 
package. By applying the practice of cyber-hopping - constantly 
changing the operating environment to prevent malware from 
targeting the system - to the hardware level, it is possible to 
defeat the majority of current malware threats. A combination of 
fat binaries with dynamic multithreaded checkpointing 
(DMTCP) allows developers to create systems capable of rapidly 
switching between hardware architectures. This paper proposes 
two new strategies for fighting malware intrusions using DMTCP 
in conjunction with hardware-level cyber-hopping to prevent 
malware from achieving elevated privilege status or functioning 
at all. 

Keywords— malware; cyber-hopping; fat binary; DMTCP 

Ι. INTRODUCTION 
Malicious software, or malware, is a diverse group of 

software programs that work to hijack computational 
resources, steal information, or disrupt the user’s experience. 
Malware defense is critical to maintaining system usability and 
integrity and can be divided into two categories: passive and 
active. A passive defense strategy is completely reactionary to 
malware attacks. Closing ports, patching vulnerabilities, and 
hopping between virtual machines all represent passive 
defensive techniques. In comparison, an active defense strategy 
is centered around proactively moving to eliminate threats. 
Active defense concentrates on searching for and eliminating 
existing threats and dynamically altering the system structure 
to compensate for detected threats. One common passive 
malware defense strategy is to constantly shift the operating 
environment, called cyber-hopping, in order to prevent 
malware from gaining elevated privileges. The purpose of this 
paper is to present two novel techniques for overcoming 
malware infection using multiple hardware architectures. 

ΙΙ. BACKGROUND 
Cyber-hopping is a technique for defending against 

malware intrusion that is centered on the practice of morphing 
the host being attacked to create a “moving target.” Malware 

will typically scan memory, ports, or other operating system 
artifacts for the purpose of privilege escalation in order to take 
control of the host machine and execute their payload. One 
method of defeating this malware mechanism is by preventing 
the malware from achieving elevated privileges, or at least 
minimizing the time the malware has those elevated privileges. 
Cyber-hopping minimizes malware with elevated privileges by 
constantly changing the host environment. The concept behind 
cyber-hopping is rooted in radio communications security 
practices that use spread-spectrum frequency hopping to 
prevent communication interception [1]. Inspired by frequency 
hopping, Shi et al. developed a system for changing a service’s 
port and network address in order to prevent data interception 
or tampering [2]. Jumping between addresses and ports was 
effective in both hiding information and the sender/receiver, 
but broke down if the jump pattern could be determined. Shi et 
al. later expanded their work [3] to include the service’s slot 
and protocol as well as cryptographic algorithm in order to 
further protect the service from any form of attack. However, 
all of the current work in cyber-hopping is limited to the 
communications space. One area where cyber-hopping has not 
been used is on the hardware level. Just as a host can jump 
between TCP/IP ports, memory spaces, and virtual machines, 
moving between hardware architectures can be used to defeat 
malware privilege elevation. Hardware architecture hopping is 
a new approach to defeating malware attacks and requires 
operating systems and applications capable of running on 
different hardware architectures. 

The challenge of running a program or operating system 
across multiple instruction sets is not a new one. Running a 
program across multiple architectures is not difficult assuming 
that the program can be compiled to the compatible machine 
code for each architecture. To create a single image of a 
program that is portable across multiple architectures, the 
individual source code compilations must be combined into 
what is known as a fat binary. A fat binary is a collection of 
two or more machine code images of a program or operating 
system stitched together with a header that can be read by all of 
the target platforms. When a fat binary is executed by a host 
machine it first reads through the header to jump to the 
appropriate location in the binary image. From the designated 
memory location, the host computer begins executing as if it 
were a binary image was compiled only for that architecture. 
Much like cyber-hopping, fat binaries are a mature technology. 



One of the most well known examples of fat binaries comes 
from Apple Computer Incorporated. As Apple was 
transitioning from the older Motorola 68000 processors to the 
newer PowerPC processors, it faced the challenge of creating 
software that would work on both machines. While the option 
of creating separate binary images for each target architecture 
was an option, it presented many challenges in manufacturing, 
distribution, and marketing. In order to allow all new operating 
systems and programs to function across both instruction sets, 
Apple created fat binaries that would run on both architectures 
[5]. Fat binaries provide the means of operating software 
across multiple architectures, but some form of process state 
capture is needed to allow for rapid transfer between 
processing architectures and uninterrupted service. 

Process migration between disparate architectures is an 
integral part of all of the approaches proposes here. To 
facilitate process migration, Linux-based operating systems can 
leverage Distributed Multi-Threaded Checkpointing 
(DMTCP). DMTCP is a fast, multi-thread and multi-processor 
compatible application designed to save the state of a computer 
or an entire cluster of computers so that it can be duplicated on 
demand [4]. Using the saved checkpoints, it is possible to 
recreate the state of the operating system quickly after 
restarting the system or switching out processes. DMTCP 
creates checkpoints by quiescing all of the user’s threads, 
draining all data in the network, copying the kernel state (e.g. 
file offsets) into a user-space data structure, and then copying 
all memory segments of the process into a checkpoint image. A 
DMTCP restart reverses this process to rebuild the operating 
system state. Optionally, DMTCP employs a central 
coordinator that coordinates multiple user processes enabling 
checkpoint-restart of a primary process and any “helper” 
processes that it may spawn. DMTCP installs a special 
checkpoint thread inside each user process, which “talks” with 
the coordinator, and directs the above stages of checkpoint-
restart. One important feature of DMTCP is that it is hardware 
agnostic and can be used to recreate an operating environment 
even when shifted between hardware architectures. 

The newest generation of embedded processors that have 
multiple hardware architectures occupying the same silicon die 
represents a unique opportunity. For the first time, it will be 
possible to implement cyber-hopping on the hardware level to 
passively defend against malware. Fat binaries represent the 
code implementation that will make architecture hopping 
possible, and DMTCP provides fast and easy transitioning 
between processes, or rebuilding the system state after a hard 
restart. 

ΙΙΙ. APPLICATION 
The latest generation of embedded systems, with multiple 

hardware architectures on a single silicon die, present unique 
strategies for fighting malware through the use of hardware-
level cyber-hopping. Fat Binaries represent a different method 
of solving current malware issues by preventing the malware 
from functioning at all. By their nature, malware programs are 
extremely small to allow them to sneak through existing 
security systems by stealth and obfuscation. The small size 
requirement forces the creators to limit the scope of the 
malware as much as possible. Generally speaking, this means 

that the malware is only coded in machine specific 
programming languages. Using fat-binaries in conjunction with 
current multi-architecture platforms, it is possible to build a 
system that can jump between architectures to prevent malware 
from functioning properly. The hardware-hopping defense 
approach applies to operating systems as a whole as well as 
individual applications. With new developments in hardware 
architecture, it is possible to create two different methods for 
implementing hardware-level cyber-hopping to fight against 
malware attacks: the split-binary approach and the monolithic 
approach. 

A. Split-Binary Approach 
One implementation of the multi-architecture method of 

defeating malware is the split-binary approach. In the split-
binary approach the system runs off of a single binary blob that 
contains the operating system kernel as well as any required 
applications. Each of these binary images is compiled for a 
single hardware architecture. In order to run across multiple 
hardware architectures, a series of binary blobs, one for each 
available architecture, is stored in non-volatile memory. During 
boot up, the bootloader determines which architecture the 
system is supposed to run on and selects the appropriate binary 
blob. Figure 1 is an example of the split-binary approach 
reacting to a malware intrusion. 

Systems using the split-binary approach protect themselves 
from malware using a relatively rudimentary technique: 
perform a hard reset whenever an event occurs. An event can 
be the detection of an intrusion, a watchdog timer, or even a 
random trigger. By performing a hard reset on the system all 
malware stored softly in volatile memory, such as RAM, are 
purged. However, resetting the system is not enough by itself 
because some malware can operate outside of volatile memory. 
To protect the system from malware that has potentially 
embedded itself in the active kernel, the running kernel blob is 
switched out with one of the alternate kernel blobs stored in 
non-volatile memory during the restart. By switching kernels, 
any malware that is embedded in what was the active kernel is 
taken offline. Once the alternate kernel is up and running on a 
different hardware architecture, the original operating kernel is 
compared against an MD5 checksum that is known to be valid 
to determine if it has been tampered with. 

In order for the split-binary approach to work, the kernel 
and associated applications must be custom tailored. One key 
feature to implement the split-binary approach is that the 
software and hardware must be configured to support instant-
on functionality to prevent long periods of downtime. Instant-
on, in this case, is defined as a boot time of less than three 
seconds. In addition, the software must be capable of being 
interrupted regularly and quickly resuming its previous 
operating state off of boot up. One of the best ways of creating 
this functionality is through DMTCP. DMTCP not only 
provides checkpointing with little overhead, but also allows the 
platform to resume processing as soon as the system restarts 
and the previous checkpoint is loaded. 

The split binary approach is not without its issues. The 
most prominent requirement is that the hardware and software 
combination must be capable of an instant-on boot. This places 
restrictions on what hardware can be used and what software 



can be implemented given the processing capacity available to 
implement DMTCP. That said, the requirement for an instant-
on boot is just as much a feature as it is a limitation because it 
removes one of the most time intensive portions of system 
maintenance and operation. In addition, because the programs 
are all embedded within the kernel, any changes to the 
operating requirements require the kernel to be recompiled. 
Recompiling the kernel can be a highly time and labor 
intensive process. However, this is not necessarily an issue as it 
can be considered an additional safety feature as it makes 
tampering with or altering the operating system that much 
more difficult. The only true weakness of the split-binary 
approach is the fact that it relies on a separate bootloader to 
bring the different binary blobs into operation. Therefore, a 
secure bootloader is essential to ensuring boot integrity and 
preventing malicious intrusions. 

In comparison to the few minor drawbacks of the split-
binary approach, it possesses many advantages. As explained 
previously, the system is extremely resistant to malware 
infections through instant resets as well as hopping between 
hardware architectures. While it creates additional hardware 
and software requirements, the instant-on nature of the system 
boot allows for extremely fast cycle times and gives system 
administrators ease of maintenance and operation by reducing 
lost time. In addition, The kernel-only operation provides two 
specific advantages. First, it never reaches multi-user operation 
which eliminates many avenues of attack. Second, as 
mentioned previously, the kernel must be recompiled every 
time a change is made, making it much more difficult to 
tamper with the source. 

B. Monolithic Approach 
A different approach to solving malware vulnerabilities 

through multi-architecture processing is the monolithic 
approach. The monolithic approach derives its name from the 
fact that all binary versions of a kernel or program for the 
available hardware architectures are in one binary blob. 
However, unlike the split-binary approach where the kernel 
and applications are a single entity, the application code is 
separate from the kernel code in the monolithic approach. The 
blobs of code can be referred to as either thin, meaning the 

binary blob only has the machine code for one architecture, or 
fat, in which case the blob has code for more than one 
architecture. Another differentiating factor from the split-
binary approach is the simultaneous use of hardware 
architectures. While the split-binary approach only leverages 
one architecture at a time, the monolithic approach employs all 
available architectures for processing. Given the array of 
architectures available, it is possible to implement the 
monolithic approach in a variety of ways. The two fundamental 
ways of employing the monolithic approach are mirroring and 
striping. 

1) Mirroring 
Mirroring uses all of the available processing architectures 

in conjunction with consensus to ensure data integrity and 
detect system infection. Similar to RAID level 1, in mirroring 
every processing architecture performs the same calculation on 
the same piece of data. As the data is processed, the operating 
system compares the outputs from the various processing 
pipelines in order to detect anomalies. If a fault is detected, the 
system can take two different actions to prevent malware 
intrusion: reset or switch pipelines. Figure 2 depicts the 
platform reaction process when malware is detected on a triple 
architecture system. 

If the faulty source of information cannot be identified, as 
is the case with only two processing pipelines and no 
heuristics, the monolithic approach acts much like the split-
binary approach. The entire system can be shut down to flush 
any malware from the volatile memory and the operating 
system and/or applications restarted on a different hardware 
architecture. As with the split-binary approach, the monolithic 
approach uses DMTCP to resume state when it restarts. The 
restart response is generally only used as a last resort as there is 
significant time lost in restarting a system unless it is capable 
of instant-on boot up.  

If the poisoned source can be identified, as is the case with 
more than two processing pipelines or good heuristics, the 
system can get away with not restarting. In the case of the 
positively identified source, that hardware pipeline is flushed 
while the other hardware architectures continue processing. 
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Fig. 1. Split-binary approach recovery process on a dual CPU and DSP system: (a) system operating on CPU, (b) malware infects the system and is stored in 
RAM, (c) system restarts, (d) system reboots onto the DSP 



Identifying the afflicted hardware pipeline is the ideal situation 
as it allows the system to continue operating uninterrupted, if at 
a lower processing throughput. 

The mirroring implementation of the monolithic 
architectures trades speed for integrity. By running all of the 
hardware pipelines on the same data the mirroring 
implementation provides positive identification of malware 
intrusion while also giving a near uninterruptible operating 
platform. Additionally, mirroring is the most infection-resistant 
implementation of the monolithic approach because of the 
redundant processing and consensus. 

2) Striping 
The striping implementation engages all of the hardware 

pipelines like the mirroring implementation, but processes a 
different piece of information with each one. Referring again to 
the RAID analog, the alternate processing implementation is 
referred to as striping because it splits the workload between all 
of the available hardware architectures. By giving up 
consensus, the striping implementation significantly increases 
processing capacity. Striping effectively multiplies the 
throughput of the mirroring implementation by the number of 
architectures available, assuming that all architectures have the 
same throughput. 

However, the significant increase in processing power 
comes at the cost of increasing the difficulty of detecting 
malware. By splitting the available resources between data 
streams, the striping implementation can no longer leverage 
consensus between the hardware architecture to detect 
malware. The striping system must rely on complex heuristics 
to identify intrusions or rely on random restarts to clear the 
system. 

If malware is detected, the striping implementation reacts in 
almost the exact same manner as the mirroring implementation. 
If the poisoned source cannot be identified, the least ideal case, 
the entire system is restarted to flush volatile memory and all 
of the processing starts on a different architecture. If the system 
can positively identify the poisoned source, that source is shut 
down and restarted on a different architecture while the other 
pipelines continue to function. If an effective method of 
detecting malware can be implemented without consensus, 
multiple hardware architectures allow sections of the system to 

be taken offline for purging while the remainder continues to 
process information. 

While not as fault tolerant as mirroring, striping provides a 
significant increase in processing power if effective methods of 
identifying malware are available. Assuming advanced 
heuristics can be used, the striping implementation provides 
several times the throughput of the mirroring implementation 
while still making zero-downtime malware reaction possible. 

IV. FUTURE WORK 
A promising method for fighting malware infections in the 

near future is to build a single binary executable that has the 
appropriate parts of an operating system and application, but 
nothing more. This is different than the split binary approach in 
that the bulk of the work would happen in the boot loader 
before any kernel (in case of Linux) loads. The user would 
make the boot loader read-only, with execution authority only 
assigned to the system and it would perform an MD5 
checksum every time the system boots. Verifying the 
checksums means that any size differences would be apparent, 
as would any spoofing of owner, group, minor number, sticky 
bit, or any other file attributes. Very little would be supported 
in this hypervisor-style mode; no buses, proc file system, or 
loadable drivers. It would have less functionality than Busybox 
or the grub rescue menu. This is obviously a quite brittle 
solution and wouldn't be appropriate to a scenario where the 
user needed to update their kernel regularly. Still, there are 
many standard precautions that most system administrators 
currently take that sequesters the writeable directories of a 
distribution. Indeed, other than the home directory of a user, 
every other directory can be write-protected, possibly located 
on a non-writable media like a CD-ROM. This approach would 
have applicability to some users while still giving the user the 
advantages of the cyber-hopping options described earlier. 

Another avenue of research it to take a cue from AMD in 
future updates to this model. AMD, when they released the 
Opteron, offered variations on usage to allow it to gain rapid 
market adoption. Unlike the Intel Itanium, which was a 
significant departure from the prevailing x86 architecture that 
represented the majority of the processors currently in use at 
the time, the Opteron was downwardly-compatible and 
upwardly mobile. It supported existing x86 (legacy mode) 
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Fig. 2. Monolithic approach with mirroring recovery process on a three-way architecture: (a) system operating all architectures, (b) malware infects the CPU pipeline and is 
stored in RAM, (c) system restarts CPU pipeline while still processing on the GPU and DSP, (d) CPU comes back online and begins processing 



applications, while encouraging x86-64 (64-bit long mode) 
development. This allowed users to have a modern OS running 
their existing, unported apps or alternately a 32-bit OS and 32-
bit apps while they were busy coding up the modern version of 
their app. An important step forward is to offer a 2 x 2 
combination of apps and operating systems, fat and thin, to 
determine efficacy of that malware defense strategy. The utility 
of this approach is yet to be determined but it is possible that 
the bulk of the malware infects one subsection over the other. 

V. CONCLUSION 
Cyber-hopping is a technique to defend against malware 

intrusion. Malware will typically scan system memory, ports, 
or other operating system artifacts for the purpose of privilege 
escalation. To defend against this, an application can "hop" to a 
new machine with a different layout before the malware can 
complete its work. The idea behind cyber-hopping is to 
repeatedly migrate an application to a fresh environment, 
whether it is as simple as changing ports or as complex as 
moving to new hardware, in which the system software of the 
destination machine is a "clean" copy. Even if the malware 
should succeed in finding a vulnerability and engaging in 
"privilege escalation", it will lose those privileges when the 
application is migrated to a new machine. 

With newer integrated hardware architectures, it is possible 
to propose a stronger version of cyber-hopping using fat 
binaries that can run on multiple hardware architectures. A 
running process executing a fat binary will be migrated 
between two different processing architectures to not only 

defeat malware running from memory, but also any malware 
that is generated on startup. The technology for doing this is an 
extension of the existing checkpoint-restart technology based 
on dynamic multi-threaded checkpointing. DMTCP is highly 
versatile because it is a user-space program in the sense that no 
kernel module or other kernel modifications are needed. In 
particular, DMTCP is the most widely used transparent, user-
space checkpoint / restart package. The destination machine for 
cyber-hopping of fat binaries can be a virtual machine for a 
different CPU, or it can be a physically different processing 
architecture under the original operating system. Regardless of 
destination, hardware cyber hopping provides a new technique 
for passively defending against malware intrusion. 

VI. REFERENCES 
[1] R.L. Pickholtz, L.B. Milstein; D.L. Schilling, "Spread Spectrum for 

Mobile Communications," IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 
313-322, May 1991. 

[2] L. Shi et al, “Port and Address Hopping for Active Cyber-Defense,” 
Intelligence and Security Informatics, vol. 4430, pp. 295-300, Jan. 2007. 

[3] L. Shi et al., "Full Service Hopping for Proactive Cyber-Defense," IEEE 
International Conference on Networking, Sensing and Control, 2008. 
pp.1337-1342, 6-8 April 2008. 

[4] J. Ansel et al., "DMTCP: Transparent Checkpointing for Cluster 
Computations and the Desktop," IEEE International Symposium on 
Parallel & Distributed Processing, 2009, pp.1-12, 23-29 May 2009 

[5] Tevanian et al., “Method and apparatus for architecture independent 
executable files,” U.S. Patent 5 432 937, July 11, 1995. 

[6] K. Keville et al., "Towards Fault-Tolerant Energy-Efficient High 
Performance Computing in the Cloud," IEEE International Conference 
on Cluster Computing, 2012, 23-28 September 2012

 


	Hampton Paper TSEA Case Study (paper) 21st ARL-USMA Technical Symposium (8 Apr 2014)
	Baker Paper_-_Multi-Architecture_Malware_Protection
	I. Introduction
	II. Background
	III. Application
	A. Split-Binary Approach
	B. Monolithic Approach
	1) Mirroring
	2) Striping


	IV. Future Work
	V. Conclusion
	VI. References


