
 AUTS 2014 (8 Apr 2014)

 1

Transient Statistical Energy Analysis:

A Case Study for Flexible Plates

R. David Hampton Robin S. Langley

Mechanical Engineering Division Mechanics, Materials, and Design Division

Civil and Mechanical Engineering Department Department of Engineering

U. S. Military Academy University of Cambridge

West Point, NY Cambridge, UK

1 Executive Summary

 A general theory for Transient Statistical Energy Analysis (TSEA) has been developed in

unpublished work by Robin S. Langley of the Cambridge University Engineering Department

(CUED, Cambridge, England), for the case of impulsive point-loading acting on a general built-up

system. This TSEA theory is applicable to any system for which a Statistical Energy Analysis

(SEA) model exists. Such SEA models have been employed widely, as for vibration analysis in

the automotive and aeronautical industries. More famously, the microgravity vibration allocation

for the International Space Station stemmed from a Boeing/NASA SEA model. Extensions to

more general transient loadings—such as blast loads—are under development, along with

statistical bounds. The general theory is adaptable to a hybrid FEA/SEA framework, to provide a

full-spectrum hybrid transient analysis for built-up systems of considerable complexity. The

present work applies the Langley methodology to a planar system comprising two flexible plates in

simple support, connected at a line junction. The paper concludes with a partial verification, for

flat rectangular plates, using exact modes and zero coupling loss factors. The match between

theory and physics is shown to be nearly exact.

2 Introduction

 The shock-response analysis of complex built-up systems is an inherently transient-response

endeavor, for which a general treatment must entail a full-spectrum approach. Deterministic

methods—such as Finite-Element- or Finite-Difference Analysis (FEA, FDA)—can often

approximate subsystem low-frequency responses with sufficient accuracy. However, with

increasing frequency these methods rapidly become impractical or infeasible due to material or

manufacturing variabilities and computational overhead. Statistical Energy Analysis (SEA) has

been used to great effect at higher frequencies, to approximate the vibratory responses of quite

general vibro-acoustic built-up systems having considerable complexity. But SEA is inherently

a steady-state approach; accordingly, some researchers have sought transient extensions in a

quest to adapt its capabilities to shock-response problems. In two of the more recent papers

Pinnington and Lednik [1, 2] presented and solved TSEA equations (1) for a discrete system

comprising two coupled single-degree-of-freedom oscillators, with one oscillator excited by a

Dirac delta impulse; and (2) for a distributed system comprising two in-line coupled beams of

different cross-sectional areas, impulsively excited at the end of one beam. These comparisons

 AUTS 2014 (8 Apr 2014)

 2

of TSEA results with exact analytical solutions show clearly the promise of TSEA. However, to

date the reported efforts have treated only special cases; a general theory has yet to emerge in the

literature.

 Recently, in two unpublished works, Langley [3, 4] developed a practical TSEA

methodology for the case of an impulsive point-load, with known spectrum, acting on a general

built-up system. Extensions to more general transient loadings—such as blast loads [5]—are

well along in development. The general theory is adaptable to a hybrid FEA/SEA framework, so

as to provide a full-spectrum hybrid transient analysis for built-up systems of considerable

complexity. This new transient SEA theory is applicable to any system for which a Statistical

Energy Analysis (SEA) model exists.

 As a partial verification, the present paper documents a case study applying (and outlining,

but without full disclosure) the Langley methodology to a simple system under known load. A

comparison of transient SEA results, against an exact modal model of a flat rectangular plate

excited by an ideal rectangular impulse, shows a remarkably good match between theory and

physics.

3 Problem Statement and Approach

 In particular, the task at hand is to verify Langley’s general solution to the transient SEA

equations, using an exact planar-system model comprising two flat, rectangular flexible plates in

simple support, connected by a line junction. The approach will be (a) to outline Langley’s

transient SEA methodology (designated herein by ―TSEA-L‖, for convenience) to determining

the transient response of a general system to transient point-loading (see below, Section 4); (b) to

provide general expressions, of a general linear system under transient point-load, for exact

system position and velocity response, kinetic energy, potential energy, and total energy (Section

5); (c) to apply TSEA-L to the two-plate system for known deterministic point loads—only

results for a rectangular pulse are detailed below (Section 6, Subsection 6.1); (d) and to apply the

deterministic equations to the same system-plus-loading case (Subsystem 6.2), for comparison

against the TSEA-L results (Subsection 6.3).

4 Transient SEA Equations

 Assume first a standard matrix form, below, for SEA equations:

 inPEA . (1)

Following Langley, assume that transient SEA equations have corresponding form:

 tt
t

t
in ,,

d

,d

PEA

E
 . (2)

Langley has shown that for impulsive point-load)(tf , with Fourier transform)(iF , the

transient SEA energies can be determined as follows:

 AUTS 2014 (8 Apr 2014)

 3

i. Find subsystem initial conditions: Determine the initial-condition vector, 0,E .

ii. Find subsystem transient solutions: Determine the transient-energy vector, t,E , by

solving (2) via the initial conditions found in (i) above.

iii. Find subsystem total energies: Determine the total-energy vector, ttotE , by integrating

 t,E over frequency.

 For the impulsive point-loading case of a system comprising subsystems, Langley’s

treatment leads to the following transient solution for the system total-energy vector:

0

2

0

2

11
1

0

2

22
2

0

2

11
1

2
tot

d)()(
1

d)()(
1

d)()(
1

d)()(
1

])(exp[2

iFn
M

iFn
M

iFn
M

iFn
M

tt AE , (3)

where subsystem k has mass kM , modal density)(kn , and impulsive point-load)(tfk with

Fourier transform)(iFk . Matrix)(A is the system matrix for the steady-state SEA

equations, when using subsystem total-energies as the states.

 Langley has demonstrated further [3, 4] that the above total energies can be used to

determine subsystem spatial-average squared-velocities, tv j
2

 and shock-response spectra.

5 Transient Deterministic Energy Equations

5.1 Transient Response

 For arbitrary loading),(0 txf on a system the generalized force in mode k, integrated over

system volume , is

 000 d)(
~

),()(xxtxfth kk

 , (4)

for which the position time-response (e.g., transverse position) at location x is given by:

 AUTS 2014 (8 Apr 2014)

 4

k

kk thxtxu
~

),(. (5)

If the load is concentrated, at single input point 0x , then the position response takes the form:

k

kkk tfxxtxu
~~

),(0 , (6)

where k
~

 is the thk modeshape, scaled to unit generalized mass, and where the generalized

modal forces are found by convolution:

 tftetf kd
kd

k
kn

,
,

sin
1 ,

. (7)

Accordingly, the velocity time-response (e.g., transverse velocity) can be expressed by:

k

kkk tgxxtxu
~~

),(0 , (8)

where tftg kk
 . (9)

5.2 Transient Kinetic Energy

 The squared velocity-response is:

 tgxxtgxxtxu lll

l k

kkk
~~~~

),( 00
2

 , (10a) 

              tgtgxxxx lklk

l k

lk 00

~~~~
 . (10b)

Accordingly, the system kinetic energy can be expressed and simplified as follows:

 xtxutT d,
2

1
)(2

 (11a)

 tgtgxxxxx lklk

l k

lk

kl

00

normalized-mass are
 modeshapes thebecause

,deltanecker oKr

~~
d

~~

2

1

, (11b)

leading to
k

kk tgxtT 2
0

2~

2

1
)(. (12)

 AUTS 2014 (8 Apr 2014)

 5

A simple expression for the expectation of the kinetic energy, over disturbance-input position,

follows from (12). First one takes the expectation of both sides of (12):

k

k
x

kx
tgxtT 2

0
2

00

~

2

1
)(. (13)

Since the modeshapes are mass-normalized,

 1d
~

00
2 xxk

 . (14)

Taking the expectation of (14), and simplifying, one obtains:

 1d
~

d
~

d
~

00
2

00
2

00
2

00
0

 xxxxxx
x

k
x

k

x

k

 . (15)

which leads directly to:

Mx

x
x

k

1

d

1~

0

0
2

0

 . (16)

Substitution from (16) into (13) yields:

k

kx
tg

M
tT 2

2

1
)(

0
. (17)

5.3 Transient Potential Energy

 System potential energy can be found similarly. The squared position-response is:

 tfxxtfxxtxu lll

l k

kkk
~~~~

),( 00
2

 , (18a) 

              tftfxxxx lklk

l k

lk 00

~~~~
 . (18b)

 Accordingly, the system potential energy can be expressed and simplified as follows:

 xtxutU d,
2

1
)(2

 (19a)

 AUTS 2014 (8 Apr 2014)

 6

 tftfxxxxx lklk

l k

lk

knkl

00

~~
d

~~

2

1

2
,

, (19b)

leading to
k

kkkn tfxtU 2
0

22
,

~

2

1
)(. (20)

The expectation of the potential energy, over disturbance-input position, is:

k

kknx
tf

M
tU 22

,
2

1
)(

0
 . (21)

5.4 Transient Total Energy

 The respective sums of (12) and (20), and of (17) and (21), give expressions for the transient

total energy and its expectation over disturbance-input position:

k

kkknk tftfxtE 222
,0

2~

2

1
)(, (22)

k

kkknx
tftf

M
tE 222

,
2

1
)(

0

 . (23)

6 Case Study

 To verify the TSEA equations, MATLAB code was written to determine and plot the

response of a planar system comprising two connected rectangular plates (Plates 1 and 2), to a

deterministic transverse point load: a rectangular impulse, applied to one of the plates. Plate

parameters were as indicated in Appendix A (for aluminum).The plates were simply supported,

and connected along a line junction the entire length of the two adjacent sides. The two plates

were assumed to be identical, with equal, and constant (frequency-independent), damping loss

factors.

6.1 Transient SEA Model

The system’s transient response was first determined using the above TSEA-L procedure

(Section 4). The coupling loss factors, 12 and 21 , equal by reciprocity considerations, were

computed and plotted via MATLAB using a wave approach. The plot of ij10log versus

10log was found to be linear (Fig. 1); ij10log versus 10log was also linear, with a

slope of ½ (Fig. 2). Accordingly, the following frequency dependence was used for the coupling

loss factors:

 AUTS 2014 (8 Apr 2014)

 7

 ,//log5.0log^10 000010 ijijij (24)

where 0 is a small nonzero value of .

Figure 1. Log-log plot of coupling loss factor vs. frequency, across a line junction

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

Frequency f [Hz]

e
ta

1
2

Coupling Loss Factor from Plate 1 to Plate 2 w Line Junction

 AUTS 2014 (8 Apr 2014)

 8

Figure 2. Log-log plot of frequency-times-coupling-loss-factor vs. frequency, across a line junction

TSEA-L yielded expressions for, and MATLAB plots of, ensemble-average transient total

energy responses of each plate, tE jtot, , to four types of deterministic transverse point-loads,

each applied individually to Plate 1:

 Rectangular impulse

 Haversine impulse

 Sawtooth impulse

 Decaying exponential impulse.

A MATLAB mfile was also written to determine and plot the energy spectra, jE , for the

individual subsystem responses, by integrating numerically the transient solutions tE j , , with

respect to time.

 Transient solutions tE j , follow below for each type of impulse; temporal- and spectral-

energy plots for each plate can be found directly from these solutions, by numerical integration.

Assuming identical plates having masses M, damping loss factors , coupling loss factors ,

and modal densities n ; and defining, for convenience,

 2~
, (25)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
-1

10
0

10
1

10
2

10
3

Frequency w [rad/s]

w
*e

ta
1
2

Frequency x Coupling Loss Factor from Plate 1 to Plate 2 w Line Junction

 AUTS 2014 (8 Apr 2014)

 9

 For a rectangular impulse of duration rT and amplitude rTF / (i.e., of strength):

 r
r

Ttt
T

tf

, (26)

the transient solutions for the two plates are as follows:

tt

tt

ee

eeT

TM

n

tE

tE

~

~

2

2

2

1 cos14

2,

,
. (27)

 For a haversine impulse of duration hhT /2 and amplitude hT/2 (i.e., of strength):

2
sin

2

2

cos12 2 t

T

t

T
tf h

h

h

h

, hTt 0 , (28)

the two transient solutions are:

tt

tt

hh ee

eeT

TTM

n

tE

tE

~

~

2

2

222

2

2

2

2

1 cos1

4

4

2,

,
. (29)

 For a symmetric sawtooth impulse of duration sT2 and positive slope
2/ sT (i.e., of

height sT and strength):

ssss

s

TtTTtT

Ttt
tf

2,

0,

 (30)

 the transient solutions are:

2

2
2

1

2,

,

M

n

tE

tE

 2

2sin22cos1sin2cos2 ssssss TTTTTT

tt

tt

ssssss
ee

ee
TTTTTT

 ~

~

2
2sin2cos2sin2cos2 . (31)

 AUTS 2014 (8 Apr 2014)

 10

 And for a decaying exponential impulse of amplitude

me1

1

 and decay

constant (i.e., so that for an impulse lasting m decay constants the strength is):

 ,/ tetf mt 0 , (32)

 the transient solutions are:

tt

tt

ee

ee

M

n

tE

tE

~

~

22

22

2

1

14,

,
. (33)

 For a rectangular impulse of strength 1000 N-s and duration 0.1 sec, and with damping ratios

0.001 and coupling loss factors from (24), the transient total-energy responses of the two plates

are given below (Figs. 3 and 4). The curves for Plates 1 and 2 are given in red and blue,

respectively; the black curve of Figure 4 is the sum of those curves, representing the total system

energy.

Figure 3. Total energy plots for Plates 1 (red) and 2 (blue)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Time [s]

E
n
e
rg

y
 [

N
-m

]

Total energy vs time for M1 and M2, w/ rectangular impulse, from all (1) time incsTotal energy vs time for M1 and M2, w/ rectangular impulse

 AUTS 2014 (8 Apr 2014)

 11

Figure 4. Total subsystem (red, blue) and total system (black) energy plots

Spectral plots are shown below for the two plates, with zero losses (Figs. 5 and 6). The red plots

show the energy spectrum for Plate 1; the blue plots (zero for all frequencies, as expected), for

Plate 2.

Figure 5. Spectral energies (Plate 1: red; Plate 2: blue), for no losses

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Time [s]

E
n
e
rg

y
 [

N
-m

]

Total energy for M1, M2, w/ rectangular impulse; sum in black

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Frequency [rad/s]

E
n
e
rg

y
 [

N
-m

/s
 t

im
e
s
 d

w
 a

t
w

]

Spectral energies, over impulse duration, w/ rectangular impulse

 AUTS 2014 (8 Apr 2014)

 12

Figure 6. Spectral energies (Plate 1: red; Plate 2: blue), for no losses

6.2 Benchmark (Exact) Model

 In order to check the above results, consider now the two-plate system from a deterministic

perspective. As before, consider each plate to have mass M and area density A , with

dimensions hba . Assume plate 1to be excited at 0,00 yxx by a rectangular impulse of

duration and strength . Let the coupling loss factors be zero, so that the TSEA-L model

reduces effectively to that for a single plate (Plate 1)—the transient energy response for Plate 2

will be nil. The approach will be to determine exact Plate 1 energy responses to identical

impulsive loadings applied at randomly distributed input locations, with uniform distribution

over most of the interior of the plate (i.e., a small distance away from the plate edges). The

ensemble-averaged total energy thus determined (i.e., found deterministically) will be compared

with the total energy found from the TSEA-L model (i.e., found statistically, without the use of

exact modes and modeshapes).

The plate modal frequencies and mass-normalized modeshapes are, respectively, for positive

integers m and l :

0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

Frequency [rad/s]

E
n
e
rg

y
 [

N
-m

/s
 t

im
e
s
 d

w
 a

t
w

]

Spectral energies, over impulse duration, w/ rectangular impulse

 AUTS 2014 (8 Apr 2014)

 13

22

b

l

a

mD

A
ml

 (34)

and
b

yn

a

xm

M
ml

 sinsin

2~
 , (35)

with flexural rigidity
)1(12 2

3

Eh
D . (36)

Kinetic- and potential-energy plate-responses can be determined from (12) and (20),

respectively, upon respective determination of tfml and tgml from (7) and (9), with

disturbance load described by (26).

 First, generalized forces tfml and generalized velocities tgml are found to be:

)(cossin
1

1
1)(1

1
,

2
,

, tutetf mld

t

mln
ml

mln

)(cossin

1

1
1 1

1
,

2

,

tute mld

tmln , (37)

)(cos2sin)()(1
1

,
,

, tutetftg mld

t

mln
mlml

mln

)(cos2sin 1

1
,

,

tute mld

tmln . (38)

 Next, the modal kinetic and potential energies are determined, for the period of the impulse

 t :

2

1
,

2

,

2

00 cos2sinsinsin
2

2

1
)(,

 te

b

yl

a

xm

M
tT mld

t

mld
ml

mln , (39)

2

1
,

2

2

,

2

00 cos2sin
1

1
1sinsin

2

2

1
)(,

te

b

yl

a

xm

M
tU mld

t

mld
ml

mln . (40)

For time after the impulse t , the modal kinetic and potential energies are, respectively:

 AUTS 2014 (8 Apr 2014)

 14

2

,

2

00 sinsin
2

2

1
)(

mld
ml

b

yl

a

xm

M
tT

2

1
,

)(
2

1
, cos2)(sincos2sin ,,

 tete mld

t

mld

t mlnmln , (41)

2

,

2

00 sinsin
2

2

1
)(

mld
ml

b

yl

a

xm

M
tU

2

1
,

)(1
,

2
cos)(sincossin

1

1 ,,

tete mld

t

mld

t mlnmln . (42)

The total plate energy is the sum of modal kinetic and potential energies, over all modes.

6.3 Comparison Plots

The following figures pertain to an aluminum plate, with base m 1a , height m 8.0b ,

depth inch) 1 (i.e., m 0127.0d , structural damping ratio 02.02 (all modes), mass

density 3kg/m 2780M , area density MA h , mass MabhM , acceleration due to

gravity 2m/s 81.9g , Young’s modulus
210 N/m 101.7 E , shear modulus

210 N/m 1055.2 G , and Poisson’s ratio 33.0 . The impulse strength was s 1000 N .

The plots use an ensemble of 100 members, for which the respective kinetic energies (KE),

potential energies (PE), and total energies (TE=KE+PE) were determined exactly for a

rectangular plate, using analytical expressions for the eigenstructure. Those individual plots

appear in the ―cloud‖ figures below (Figs. 7 through 9). Figures 10 through 12 show plots of

ensemble averages for KE, PE, and TE.
*
 Figure 13 compares ensemble-mean KE (x 2) and

TSEA-L results. Figures 14 and 15 compare the ensemble averages (2KE, 2PE, and

TE=KE+PE) with the total energy determined using TSEA-L. Note that the total energy found

deterministically, using the exact eigenstructure, matches very closely the TSEA-L energy.

*
 Ensemble averages were found by actually averaging the ensemble members—that is, via

Equations (12) and (20), rather than by simply using (13) and (21) directly. The latter set of

equations would, of course, produce very similar results, but without the ―cloud‖ plots of Figures

7 through 9).

 AUTS 2014 (8 Apr 2014)

 15

Figure 7. Exact plots of kinetic energy for 100-member ensemble, Plate 1, no coupling.

Figure 8. Exact plots of potential energy for 100-member ensemble, Plate 1, no coupling.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4

6

8

10

12

14
x 10

5 Plate KE vs t for ensemble members (using exact modes)

t [s]

P
la

te
 k

in
e
ti
c
 e

n
e
rg

y
 [

J
,

N
-m

]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4

6

8

10

12

14
x 10

5 Plate PE vs t for ensemble members (using exact modes)

t [s]

P
la

te
 k

in
e
ti
c
 e

n
e
rg

y
 [

J
,

N
-m

]

 AUTS 2014 (8 Apr 2014)

 16

Figure 9. Exact plots of total energy for 100-member ensemble, Plate 1, no coupling.

Figure 10. Ensemble-mean plot of kinetic energy for 100-member ensemble, Plate 1, no coupling.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Plate TE vs t for ensemble members (using exact modes)

t [s]

P
la

te
 k

in
e
ti
c
 e

n
e
rg

y
 [

J
,

N
-m

]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

1

2

3

4

5

6

7

8

9

10
x 10

5 Ensemble-mean plate KE vs t (using exact modes)

t [s]

P
la

te
 k

in
e
ti
c
 e

n
e
rg

y
 [

J
,

N
-m

]

 AUTS 2014 (8 Apr 2014)

 17

Figure 11. Ensemble-mean plot of potential energy for 100-member ensemble, Plate 1, no coupling.

Figure 12. Ensemble-mean plot of total energy for 100-member ensemble, Plate 1, no coupling.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

1

2

3

4

5

6

7

8

9

10
x 10

5 Ensemble-mean plate PE vs t (using exact modes)

t [s]

P
la

te
 p

o
te

n
ti
a
l
e
n
e
rg

y
 [

J
,

N
-m

]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

2

4

6

8

10

12

14

16

18
x 10

5 Ensemble-mean plate TE vs t (using exact modes)

t [s]

P
la

te
 t

o
ta

l
e
n
e
rg

y
 [

J
,

N
-m

]

 AUTS 2014 (8 Apr 2014)

 18

 Figure 13. Comparison of exact 2KE (ensemble-averaged),

and TE via TSEA-L, for system, with no coupling

 Figure 14. Exact system 2KE, 2PE, KE+PE; and TE via TSEA-L

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Comparison of Plate 2KE (via exact modes) and TE (via TSEA) vs t

t [s]

P
la

te
 t

o
ta

l
e
n
e
rg

y
 [

J
,

N
-m

]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 2KE (blue), 2PE (grn), KE+PE (red), via exact modes); & TE (blk), via TSEA). Uses means from 100 mode(s).

t [s]

P
la

te
 t

o
ta

l
e
n
e
rg

y
 [

J
,

N
-m

]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 2KE (blue), 2PE (grn), KE+PE (red), via exact modes); & TE (blk), via TSEA). Uses means from 100 mode(s).

t [s]

P
la

te
 t

o
ta

l
e
n
e
rg

y
 [

J
,

N
-m

]

 AUTS 2014 (8 Apr 2014)

 19

Figure 15. Exact system 2KE, 2PE, KE+PE; and TE via TSEA-L

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5
x 10

6

t [s]

P
la

te
 t

o
ta

l
e
n
e
rg

y
 [

J
,

N
-m

]

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 2KE (blue), 2PE (grn), KE+PE (red), via exact modes); & TE (blk), via TSEA). Uses means from 100 mode(s).

t [s]

P
la

te
 t

o
ta

l
e
n
e
rg

y
 [

J
,

N
-m

]

 AUTS 2014 (8 Apr 2014)

 20

As a final internal-consistency check of TSEA-L, the total energy of the full system (both

plates), found using TSEA-L with damping ratios 0.001 and coupling loss factors from (24)—the

green plot of Figure 11, was subtracted from the total energy of the full system, found using

TSEA-L with for damping ratio 0.001 and zero coupling loss factors—the black plot of Figure 2.

Since the damping loss factors are identical for the two cases, the two total-energy-versus-time

plots should be identical. This is, in fact, the case: the difference between these two curves,

plotted in Figure 15, is essentially zero.

Figure 16. TSEA-L TE for full system, with actual CLFs,
minus sum of TSEA-L subsystem TEs, with zero CLFs.

7 Application and Future Work

 A sufficiently rigorous mathematical framework exists for transient SEA (TSEA) to be

considered available, in principle, for the transient analysis of complex built-up systems, under

point-shock loadings of known or specified spectral content. This framework is readily

extendable to the case, at least, of uniform blast loads of specified spectral content. The TSEA

models will have a fidelity corresponding to the level of fidelity of the underlying SEA model,

for which commercial software is already available.

 Future research efforts could seek (1) to verify further, by simulation and/or experiment, the

above point-load methodology for more complex systems; (2) to explore and develop extensions

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Time [s]

E
n
e
rg

y
 [

N
-m

]

TSEA-L system TE w/ actual CLFs - sum of TSEA-L subsystem TEs w/ zero CLFs

 AUTS 2014 (8 Apr 2014)

 21

for spatially varying blast-loading; (3) to integrate TSEA theory with Random Generalized Force

Reconstruction (RFGR) and into hybrid FEA/SEA methods; (4) to determine statistical bounds

on TSEA and hybrid FEA/TSEA; and (5) to develop user-friendly implementation software for

TSEA. (6) Benchmarking and validation studies could also be pursued, to explore fidelity and

suitability guidelines and limitations.

8 Summary and Conclusion

 A solution to transient SEA equations has been developed for a general built-up system

possessing a valid SEA model. The TSEA solution applies directly to the case of impulsive

point-loadings; but straightforward extensions are possible for the case of impulsive uniform-

blast loadings, and for point- and uniform-blast-loading combinations.

 The TSEA solution was applied to a homogeneous rectangular plate under simple support,

for which the eigenstructure is known in exact analytical form. Comparison of TSEA- and

spatially averaged exact-model transient shock responses showed a near-perfect match. TSEA

theory may at last be at a level of rigor and generality sufficient to justify concerted development

efforts in theory-refinement and application-software development.

9 Acknowledgements

 The authors are grateful to the U.S. Military Academy (Civil and Mechanical Engineering

Department, Mathematical Sciences Center of Excellence, and Center for Innovation and

Engineering), and the Army Research Laboratory for partial funding of this work.

10 References

[1] Pinnington, R. J., and Lednik, D., ―Transient statistical energy analysis of an impulsively

excited two oscillator system,‖ Journal of Sound and Vibration, Vol. 189, pp. 249-264,

1996.

[2] Pinnington, R. J., and Lednik, D., ―Transient energy flow between two coupled beams,‖

Journal of Sound and Vibration, Vol. 189, pp. 265-287, 1996.

[3] Langley, R. S., ―Shock Response: Part I – A Preliminary Study of the use of Transient SEA

to Predict Shock Loading,‖ San Diego, CA, Sep. 2011.

[4] Langley, R. S., ―Shock Response: Part II – The Shock Response Spectrum and Overview of

Method,‖ San Diego, CA, Dec. 2011.

[5] Hampton, R. D., and Langley, R. S., ―Time- and ensemble-averaged total-energy response

of a flexible plate, to uniform steady-state pressure loading of arbitrary spectral content,‖

Proc. of the 20
th

 ARL/USMA Technical Symposium, Florham Park, NJ, Nov. 29-30, 2012.

 AUTS 2014 (8 Apr 2014)

 22

11 Appendix A: Plate Parameters

Length: 1a m

Width: 8.0b m

Depth (thickness): 0254.0d m 1 in

Mass density: 2780M kg/m
3

Area density: dMA kg/m
2

Young’s modulus:
10101.7 E N/m

2

Shear modulus:
101055.2 G N/m

2

Poisson’s ratio: 33.0

Flexural rigidity:
2

3

112

Ed
D

Cyber-Hopping over Multiple Architectures
as a Malware Defense

Stuart P. Baker, Student Member, IEEE
Department of Electrical Engineering & Computer Science

United States Military Academy
West Point, NY 10996
stuart.baker@usma.edu

Kurt Keville, Member, IEEE
Institute for Soldier Nanotechnologies
Massachusetts Institute of Technology

Cambridge, MA 02142
kkeville@mit.edu

Abstract—Malware is a constantly shifting threat to computer
systems that works to hijack the host computer for various
nefarious purposes. Defeating malware is an endless struggle for
developers as threats are continuously morphing and evolving to
overcome current defensive techniques. However, the latest
generation of processors presents new opportunities for malware
defense by integrating multiple architectures on the same silicon
package. By applying the practice of cyber-hopping - constantly
changing the operating environment to prevent malware from
targeting the system - to the hardware level, it is possible to
defeat the majority of current malware threats. A combination of
fat binaries with dynamic multithreaded checkpointing
(DMTCP) allows developers to create systems capable of rapidly
switching between hardware architectures. This paper proposes
two new strategies for fighting malware intrusions using DMTCP
in conjunction with hardware-level cyber-hopping to prevent
malware from achieving elevated privilege status or functioning
at all.

Keywords— malware; cyber-hopping; fat binary; DMTCP

Ι. INTRODUCTION
Malicious software, or malware, is a diverse group of

software programs that work to hijack computational
resources, steal information, or disrupt the user’s experience.
Malware defense is critical to maintaining system usability and
integrity and can be divided into two categories: passive and
active. A passive defense strategy is completely reactionary to
malware attacks. Closing ports, patching vulnerabilities, and
hopping between virtual machines all represent passive
defensive techniques. In comparison, an active defense strategy
is centered around proactively moving to eliminate threats.
Active defense concentrates on searching for and eliminating
existing threats and dynamically altering the system structure
to compensate for detected threats. One common passive
malware defense strategy is to constantly shift the operating
environment, called cyber-hopping, in order to prevent
malware from gaining elevated privileges. The purpose of this
paper is to present two novel techniques for overcoming
malware infection using multiple hardware architectures.

ΙΙ. BACKGROUND
Cyber-hopping is a technique for defending against

malware intrusion that is centered on the practice of morphing
the host being attacked to create a “moving target.” Malware

will typically scan memory, ports, or other operating system
artifacts for the purpose of privilege escalation in order to take
control of the host machine and execute their payload. One
method of defeating this malware mechanism is by preventing
the malware from achieving elevated privileges, or at least
minimizing the time the malware has those elevated privileges.
Cyber-hopping minimizes malware with elevated privileges by
constantly changing the host environment. The concept behind
cyber-hopping is rooted in radio communications security
practices that use spread-spectrum frequency hopping to
prevent communication interception [1]. Inspired by frequency
hopping, Shi et al. developed a system for changing a service’s
port and network address in order to prevent data interception
or tampering [2]. Jumping between addresses and ports was
effective in both hiding information and the sender/receiver,
but broke down if the jump pattern could be determined. Shi et
al. later expanded their work [3] to include the service’s slot
and protocol as well as cryptographic algorithm in order to
further protect the service from any form of attack. However,
all of the current work in cyber-hopping is limited to the
communications space. One area where cyber-hopping has not
been used is on the hardware level. Just as a host can jump
between TCP/IP ports, memory spaces, and virtual machines,
moving between hardware architectures can be used to defeat
malware privilege elevation. Hardware architecture hopping is
a new approach to defeating malware attacks and requires
operating systems and applications capable of running on
different hardware architectures.

The challenge of running a program or operating system
across multiple instruction sets is not a new one. Running a
program across multiple architectures is not difficult assuming
that the program can be compiled to the compatible machine
code for each architecture. To create a single image of a
program that is portable across multiple architectures, the
individual source code compilations must be combined into
what is known as a fat binary. A fat binary is a collection of
two or more machine code images of a program or operating
system stitched together with a header that can be read by all of
the target platforms. When a fat binary is executed by a host
machine it first reads through the header to jump to the
appropriate location in the binary image. From the designated
memory location, the host computer begins executing as if it
were a binary image was compiled only for that architecture.
Much like cyber-hopping, fat binaries are a mature technology.

One of the most well known examples of fat binaries comes
from Apple Computer Incorporated. As Apple was
transitioning from the older Motorola 68000 processors to the
newer PowerPC processors, it faced the challenge of creating
software that would work on both machines. While the option
of creating separate binary images for each target architecture
was an option, it presented many challenges in manufacturing,
distribution, and marketing. In order to allow all new operating
systems and programs to function across both instruction sets,
Apple created fat binaries that would run on both architectures
[5]. Fat binaries provide the means of operating software
across multiple architectures, but some form of process state
capture is needed to allow for rapid transfer between
processing architectures and uninterrupted service.

Process migration between disparate architectures is an
integral part of all of the approaches proposes here. To
facilitate process migration, Linux-based operating systems can
leverage Distributed Multi-Threaded Checkpointing
(DMTCP). DMTCP is a fast, multi-thread and multi-processor
compatible application designed to save the state of a computer
or an entire cluster of computers so that it can be duplicated on
demand [4]. Using the saved checkpoints, it is possible to
recreate the state of the operating system quickly after
restarting the system or switching out processes. DMTCP
creates checkpoints by quiescing all of the user’s threads,
draining all data in the network, copying the kernel state (e.g.
file offsets) into a user-space data structure, and then copying
all memory segments of the process into a checkpoint image. A
DMTCP restart reverses this process to rebuild the operating
system state. Optionally, DMTCP employs a central
coordinator that coordinates multiple user processes enabling
checkpoint-restart of a primary process and any “helper”
processes that it may spawn. DMTCP installs a special
checkpoint thread inside each user process, which “talks” with
the coordinator, and directs the above stages of checkpoint-
restart. One important feature of DMTCP is that it is hardware
agnostic and can be used to recreate an operating environment
even when shifted between hardware architectures.

The newest generation of embedded processors that have
multiple hardware architectures occupying the same silicon die
represents a unique opportunity. For the first time, it will be
possible to implement cyber-hopping on the hardware level to
passively defend against malware. Fat binaries represent the
code implementation that will make architecture hopping
possible, and DMTCP provides fast and easy transitioning
between processes, or rebuilding the system state after a hard
restart.

ΙΙΙ. APPLICATION
The latest generation of embedded systems, with multiple

hardware architectures on a single silicon die, present unique
strategies for fighting malware through the use of hardware-
level cyber-hopping. Fat Binaries represent a different method
of solving current malware issues by preventing the malware
from functioning at all. By their nature, malware programs are
extremely small to allow them to sneak through existing
security systems by stealth and obfuscation. The small size
requirement forces the creators to limit the scope of the
malware as much as possible. Generally speaking, this means

that the malware is only coded in machine specific
programming languages. Using fat-binaries in conjunction with
current multi-architecture platforms, it is possible to build a
system that can jump between architectures to prevent malware
from functioning properly. The hardware-hopping defense
approach applies to operating systems as a whole as well as
individual applications. With new developments in hardware
architecture, it is possible to create two different methods for
implementing hardware-level cyber-hopping to fight against
malware attacks: the split-binary approach and the monolithic
approach.

A. Split-Binary Approach
One implementation of the multi-architecture method of

defeating malware is the split-binary approach. In the split-
binary approach the system runs off of a single binary blob that
contains the operating system kernel as well as any required
applications. Each of these binary images is compiled for a
single hardware architecture. In order to run across multiple
hardware architectures, a series of binary blobs, one for each
available architecture, is stored in non-volatile memory. During
boot up, the bootloader determines which architecture the
system is supposed to run on and selects the appropriate binary
blob. Figure 1 is an example of the split-binary approach
reacting to a malware intrusion.

Systems using the split-binary approach protect themselves
from malware using a relatively rudimentary technique:
perform a hard reset whenever an event occurs. An event can
be the detection of an intrusion, a watchdog timer, or even a
random trigger. By performing a hard reset on the system all
malware stored softly in volatile memory, such as RAM, are
purged. However, resetting the system is not enough by itself
because some malware can operate outside of volatile memory.
To protect the system from malware that has potentially
embedded itself in the active kernel, the running kernel blob is
switched out with one of the alternate kernel blobs stored in
non-volatile memory during the restart. By switching kernels,
any malware that is embedded in what was the active kernel is
taken offline. Once the alternate kernel is up and running on a
different hardware architecture, the original operating kernel is
compared against an MD5 checksum that is known to be valid
to determine if it has been tampered with.

In order for the split-binary approach to work, the kernel
and associated applications must be custom tailored. One key
feature to implement the split-binary approach is that the
software and hardware must be configured to support instant-
on functionality to prevent long periods of downtime. Instant-
on, in this case, is defined as a boot time of less than three
seconds. In addition, the software must be capable of being
interrupted regularly and quickly resuming its previous
operating state off of boot up. One of the best ways of creating
this functionality is through DMTCP. DMTCP not only
provides checkpointing with little overhead, but also allows the
platform to resume processing as soon as the system restarts
and the previous checkpoint is loaded.

The split binary approach is not without its issues. The
most prominent requirement is that the hardware and software
combination must be capable of an instant-on boot. This places
restrictions on what hardware can be used and what software

can be implemented given the processing capacity available to
implement DMTCP. That said, the requirement for an instant-
on boot is just as much a feature as it is a limitation because it
removes one of the most time intensive portions of system
maintenance and operation. In addition, because the programs
are all embedded within the kernel, any changes to the
operating requirements require the kernel to be recompiled.
Recompiling the kernel can be a highly time and labor
intensive process. However, this is not necessarily an issue as it
can be considered an additional safety feature as it makes
tampering with or altering the operating system that much
more difficult. The only true weakness of the split-binary
approach is the fact that it relies on a separate bootloader to
bring the different binary blobs into operation. Therefore, a
secure bootloader is essential to ensuring boot integrity and
preventing malicious intrusions.

In comparison to the few minor drawbacks of the split-
binary approach, it possesses many advantages. As explained
previously, the system is extremely resistant to malware
infections through instant resets as well as hopping between
hardware architectures. While it creates additional hardware
and software requirements, the instant-on nature of the system
boot allows for extremely fast cycle times and gives system
administrators ease of maintenance and operation by reducing
lost time. In addition, The kernel-only operation provides two
specific advantages. First, it never reaches multi-user operation
which eliminates many avenues of attack. Second, as
mentioned previously, the kernel must be recompiled every
time a change is made, making it much more difficult to
tamper with the source.

B. Monolithic Approach
A different approach to solving malware vulnerabilities

through multi-architecture processing is the monolithic
approach. The monolithic approach derives its name from the
fact that all binary versions of a kernel or program for the
available hardware architectures are in one binary blob.
However, unlike the split-binary approach where the kernel
and applications are a single entity, the application code is
separate from the kernel code in the monolithic approach. The
blobs of code can be referred to as either thin, meaning the

binary blob only has the machine code for one architecture, or
fat, in which case the blob has code for more than one
architecture. Another differentiating factor from the split-
binary approach is the simultaneous use of hardware
architectures. While the split-binary approach only leverages
one architecture at a time, the monolithic approach employs all
available architectures for processing. Given the array of
architectures available, it is possible to implement the
monolithic approach in a variety of ways. The two fundamental
ways of employing the monolithic approach are mirroring and
striping.

1) Mirroring
Mirroring uses all of the available processing architectures

in conjunction with consensus to ensure data integrity and
detect system infection. Similar to RAID level 1, in mirroring
every processing architecture performs the same calculation on
the same piece of data. As the data is processed, the operating
system compares the outputs from the various processing
pipelines in order to detect anomalies. If a fault is detected, the
system can take two different actions to prevent malware
intrusion: reset or switch pipelines. Figure 2 depicts the
platform reaction process when malware is detected on a triple
architecture system.

If the faulty source of information cannot be identified, as
is the case with only two processing pipelines and no
heuristics, the monolithic approach acts much like the split-
binary approach. The entire system can be shut down to flush
any malware from the volatile memory and the operating
system and/or applications restarted on a different hardware
architecture. As with the split-binary approach, the monolithic
approach uses DMTCP to resume state when it restarts. The
restart response is generally only used as a last resort as there is
significant time lost in restarting a system unless it is capable
of instant-on boot up.

If the poisoned source can be identified, as is the case with
more than two processing pipelines or good heuristics, the
system can get away with not restarting. In the case of the
positively identified source, that hardware pipeline is flushed
while the other hardware architectures continue processing.

DSPCPU

Kernel
&

Application

DSP

Memory

I/O Bridge

CPU

Kernel
&

Application

DSP

Memory

I/O Bridge

Malware

CPU

Memory

I/O Bridge

DSPCPU

Kernel
&

Application

Memory

I/O Bridge

(a) (b) (c) (d)

Fig. 1. Split-binary approach recovery process on a dual CPU and DSP system: (a) system operating on CPU, (b) malware infects the system and is stored in
RAM, (c) system restarts, (d) system reboots onto the DSP

Identifying the afflicted hardware pipeline is the ideal situation
as it allows the system to continue operating uninterrupted, if at
a lower processing throughput.

The mirroring implementation of the monolithic
architectures trades speed for integrity. By running all of the
hardware pipelines on the same data the mirroring
implementation provides positive identification of malware
intrusion while also giving a near uninterruptible operating
platform. Additionally, mirroring is the most infection-resistant
implementation of the monolithic approach because of the
redundant processing and consensus.

2) Striping
The striping implementation engages all of the hardware

pipelines like the mirroring implementation, but processes a
different piece of information with each one. Referring again to
the RAID analog, the alternate processing implementation is
referred to as striping because it splits the workload between all
of the available hardware architectures. By giving up
consensus, the striping implementation significantly increases
processing capacity. Striping effectively multiplies the
throughput of the mirroring implementation by the number of
architectures available, assuming that all architectures have the
same throughput.

However, the significant increase in processing power
comes at the cost of increasing the difficulty of detecting
malware. By splitting the available resources between data
streams, the striping implementation can no longer leverage
consensus between the hardware architecture to detect
malware. The striping system must rely on complex heuristics
to identify intrusions or rely on random restarts to clear the
system.

If malware is detected, the striping implementation reacts in
almost the exact same manner as the mirroring implementation.
If the poisoned source cannot be identified, the least ideal case,
the entire system is restarted to flush volatile memory and all
of the processing starts on a different architecture. If the system
can positively identify the poisoned source, that source is shut
down and restarted on a different architecture while the other
pipelines continue to function. If an effective method of
detecting malware can be implemented without consensus,
multiple hardware architectures allow sections of the system to

be taken offline for purging while the remainder continues to
process information.

While not as fault tolerant as mirroring, striping provides a
significant increase in processing power if effective methods of
identifying malware are available. Assuming advanced
heuristics can be used, the striping implementation provides
several times the throughput of the mirroring implementation
while still making zero-downtime malware reaction possible.

IV. FUTURE WORK
A promising method for fighting malware infections in the

near future is to build a single binary executable that has the
appropriate parts of an operating system and application, but
nothing more. This is different than the split binary approach in
that the bulk of the work would happen in the boot loader
before any kernel (in case of Linux) loads. The user would
make the boot loader read-only, with execution authority only
assigned to the system and it would perform an MD5
checksum every time the system boots. Verifying the
checksums means that any size differences would be apparent,
as would any spoofing of owner, group, minor number, sticky
bit, or any other file attributes. Very little would be supported
in this hypervisor-style mode; no buses, proc file system, or
loadable drivers. It would have less functionality than Busybox
or the grub rescue menu. This is obviously a quite brittle
solution and wouldn't be appropriate to a scenario where the
user needed to update their kernel regularly. Still, there are
many standard precautions that most system administrators
currently take that sequesters the writeable directories of a
distribution. Indeed, other than the home directory of a user,
every other directory can be write-protected, possibly located
on a non-writable media like a CD-ROM. This approach would
have applicability to some users while still giving the user the
advantages of the cyber-hopping options described earlier.

Another avenue of research it to take a cue from AMD in
future updates to this model. AMD, when they released the
Opteron, offered variations on usage to allow it to gain rapid
market adoption. Unlike the Intel Itanium, which was a
significant departure from the prevailing x86 architecture that
represented the majority of the processors currently in use at
the time, the Opteron was downwardly-compatible and
upwardly mobile. It supported existing x86 (legacy mode)

GPU Kernel &
Application

DSP

Memory

I/O Bridge

CPU Kernel &
Application

Kernel &
Application

Consensus GPU Kernel &
Application

DSP

Memory

I/O Bridge

CPU Kernel &
Application

Kernel &
Application

Consensus

Malware

GPU Kernel &
Application

DSP

Memory

I/O Bridge

CPU Kernel &
Application

Kernel &
Application

Consensus GPU Kernel &
Application

DSP

Memory

I/O Bridge

CPU Kernel &
Application

Kernel &
Application

Consensus

(a) (b) (c) (d)

Fig. 2. Monolithic approach with mirroring recovery process on a three-way architecture: (a) system operating all architectures, (b) malware infects the CPU pipeline and is
stored in RAM, (c) system restarts CPU pipeline while still processing on the GPU and DSP, (d) CPU comes back online and begins processing

applications, while encouraging x86-64 (64-bit long mode)
development. This allowed users to have a modern OS running
their existing, unported apps or alternately a 32-bit OS and 32-
bit apps while they were busy coding up the modern version of
their app. An important step forward is to offer a 2 x 2
combination of apps and operating systems, fat and thin, to
determine efficacy of that malware defense strategy. The utility
of this approach is yet to be determined but it is possible that
the bulk of the malware infects one subsection over the other.

V. CONCLUSION
Cyber-hopping is a technique to defend against malware

intrusion. Malware will typically scan system memory, ports,
or other operating system artifacts for the purpose of privilege
escalation. To defend against this, an application can "hop" to a
new machine with a different layout before the malware can
complete its work. The idea behind cyber-hopping is to
repeatedly migrate an application to a fresh environment,
whether it is as simple as changing ports or as complex as
moving to new hardware, in which the system software of the
destination machine is a "clean" copy. Even if the malware
should succeed in finding a vulnerability and engaging in
"privilege escalation", it will lose those privileges when the
application is migrated to a new machine.

With newer integrated hardware architectures, it is possible
to propose a stronger version of cyber-hopping using fat
binaries that can run on multiple hardware architectures. A
running process executing a fat binary will be migrated
between two different processing architectures to not only

defeat malware running from memory, but also any malware
that is generated on startup. The technology for doing this is an
extension of the existing checkpoint-restart technology based
on dynamic multi-threaded checkpointing. DMTCP is highly
versatile because it is a user-space program in the sense that no
kernel module or other kernel modifications are needed. In
particular, DMTCP is the most widely used transparent, user-
space checkpoint / restart package. The destination machine for
cyber-hopping of fat binaries can be a virtual machine for a
different CPU, or it can be a physically different processing
architecture under the original operating system. Regardless of
destination, hardware cyber hopping provides a new technique
for passively defending against malware intrusion.

VI. REFERENCES
[1] R.L. Pickholtz, L.B. Milstein; D.L. Schilling, "Spread Spectrum for

Mobile Communications," IEEE Trans. Veh. Technol., vol. 40, no. 2, pp.
313-322, May 1991.

[2] L. Shi et al, “Port and Address Hopping for Active Cyber-Defense,”
Intelligence and Security Informatics, vol. 4430, pp. 295-300, Jan. 2007.

[3] L. Shi et al., "Full Service Hopping for Proactive Cyber-Defense," IEEE
International Conference on Networking, Sensing and Control, 2008.
pp.1337-1342, 6-8 April 2008.

[4] J. Ansel et al., "DMTCP: Transparent Checkpointing for Cluster
Computations and the Desktop," IEEE International Symposium on
Parallel & Distributed Processing, 2009, pp.1-12, 23-29 May 2009

[5] Tevanian et al., “Method and apparatus for architecture independent
executable files,” U.S. Patent 5 432 937, July 11, 1995.

[6] K. Keville et al., "Towards Fault-Tolerant Energy-Efficient High
Performance Computing in the Cloud," IEEE International Conference
on Cluster Computing, 2012, 23-28 September 2012

	Hampton Paper TSEA Case Study (paper) 21st ARL-USMA Technical Symposium (8 Apr 2014)
	Baker Paper_-_Multi-Architecture_Malware_Protection
	I. Introduction
	II. Background
	III. Application
	A. Split-Binary Approach
	B. Monolithic Approach
	1) Mirroring
	2) Striping

	IV. Future Work
	V. Conclusion
	VI. References

